
Learning to Handle Exceptions

Jian Zhang∗

SKLSDE Lab, Beihang University,

China

zhangj@act.buaa.edu.cn

Xu Wang∗†

SKLSDE Lab, Beihang University,

China

wangxu@act.buaa.edu.cn

Hongyu Zhang
The University of Newcastle,

Australia

hongyu.zhang@newcastle.edu.au

Hailong Sun∗

SKLSDE Lab, Beihang University,

China

sunhl@act.buaa.edu.cn

Yanjun Pu
SKLSDE Lab, Beihang University,

China

puyanjun@nlsde.buaa.edu.cn

Xudong Liu∗

SKLSDE Lab, Beihang University,

China

liuxd@act.buaa.edu.cn

ABSTRACT

Exception handling is an important built-in feature of many mod-

ern programming languages such as Java. It allows developers to

deal with abnormal or unexpected conditions that may occur at

runtime in advance by using try-catch blocks. Missing or improper

implementation of exception handling can cause catastrophic con-

sequences such as system crash. However, previous studies reveal

that developers are unwilling or feel it hard to adopt exception

handling mechanism, and tend to ignore it until a system failure

forces them to do so. To help developers with exception handling,

existing work produces recommendations such as code examples

and exception types, which still requires developers to localize the

try blocks and modify the catch block code to fit the context. In this

paper, we propose a novel neural approach to automated exception

handling, which can predict locations of try blocks and automati-

cally generate the complete catch blocks. We collect a large number

of Java methods from GitHub and conduct experiments to evaluate

our approach. The evaluation results, including quantitative mea-

surement and human evaluation, show that our approach is highly

effective and outperforms all baselines. Our work makes one step

further towards automated exception handling.

CCS CONCEPTS

• Software and its engineering→ Error handling and recov-

ery; Automatic programming.

KEYWORDS

Exception handling, deep learning,neural network, code generation

∗Also with Beijing Advanced Innovation Center for Big Data and Brain Computing,
Beihang University, Beijing 100191, China.
†Corresponding author: Xu Wang, wangxu@act.buaa.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASE ’20, September 21–25, 2020, Virtual Event, Australia

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3416568

ACM Reference Format:

Jian Zhang, XuWang, Hongyu Zhang, Hailong Sun, Yanjun Pu, and Xudong

Liu. 2020. Learning to Handle Exceptions. In 35th IEEE/ACM International

Conference on Automated Software Engineering (ASE ’20), September 21–25,

2020, Virtual Event, Australia. ACM, New York, NY, USA, 13 pages. https:

//doi.org/10.1145/3324884.3416568

1 INTRODUCTION

Exception handling mechanism is essential for modern program-

ming languages such as Java and C# to build robust and reliable

software systems [43, 58]. It provides an effective means of dealing

with exceptional conditions and recovering from them by using try-

catch blocks [22, 25]. Exception handling separates error-handling

code from regular source code and improves program comprehen-

sion and maintenance [15]. However, missing or improperly using

exception handling statements may cause severe problems such as

system crash [67] and information leakage [68]. One recent study

[19] reveals that there is a significant relationship between excep-

tion flow characteristics and post-release defects in Java projects.

Therefore, it is crucial for developers to handle exceptions.

Despite the importance of exception handling, the exception han-

dling statements such as try-catch blocks in real-world software are

often poorly written and error-prone. For example, prior studies

[10, 18, 21] indicate that many industrial systems exhibit poor qual-

ity code with respect to exception handling. Besides, similar bad

practices have been found in open source software [4, 46]. Among

our collected millions of original Java methods in 2,000 projects

fromGitHub with high numbers of stars and forks, only 14.9% of the

methods apply try blocks to capture exceptions, and 31.2% of these

methods do not have catch blocks and do nothing when exceptions

occur. The reason is twofold. On the one hand, developers tend

to ignore exception handling code or even have little knowledge

about whether or not exception handling is needed until an error

occurs [56, 57]. On the other hand, the exception handling code is

often difficult to write for developers, especially when it comes to

program evolution [53]. Hence, as suggested in [19], it is essential

to propose automatic techniques for assisting developers in writing

high-quality exception handling code.

Existing work on automatic techniques for exception handling

mainly includes violation detection of exception handling policies

[6, 7, 58] and exception handling code recommendation [45, 51]. For

example, Thummalapenta et al. [58] mined association rules on the

sequence of function calls in try and catch blocks and applied them

29

2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3324884.3416568&domain=pdf&date_stamp=2021-01-27

to detect violations of exception handling policies. Such approaches

are helpful to improve the quality of exception handling code, yet

they are limited since they assume that the try-catch blocks have

been completely written by developers. By contrast, exception han-

dling code recommendation is more useful to assist developers in

writing the try-catch blocks. Given an under-development code

fragment without try-catch blocks, Rahman et al. [51] retrieved

similar code fragments that include try-catch blocks to recommend

exception handling code examples from popular code repositories

at GitHub. Nguyen et al. [45] recommended exception types and

method calls in the catch block by utilizing the fuzzy set theory [35]

and N-gram model [27]. However, there are two main drawbacks

of recommendation-based approaches. First, these studies assume

that developers understand when to seek for help about writing

exception handling code and where the try-catch blocks should be

put, while in practice it is not always the case [56, 57]; Second, even

though the recommended code such as examples, exception types

and method calls can provide useful knowledge to aid developers

in writing try-catch blocks, the developers still need to modify the

code to fit the context.

In this paper, we propose a novel Neural approach to automated

exception handling code generation (namely Nexgen), which can

predict locations of try blocks and automatically generate the com-

plete catch blocks. We separate exception handling into two tasks:

one is to predict the try block locations for identifying source code

that needs to handle potential exceptions; the other is to generate

complete catch blocks to deal with the exceptions. Consider a typi-

cal coding scenario that a developer has written a code fragment

as shown in 1(a), which is a Java method from the Elasticsearch1

project. Here we remove its original exception handling code for

illustration purpose. The first task is to identify which statements

need to be put in a try block. In this example, the statement at line

8 in Figure 1(a) requires a try block. The second task is to gener-

ate the catch block. In this example, according to the code above

line 11 in Figure 1(b), the catch block in lines 11-13 is generated to

handle the exception. In this way, the potential exceptions can be

automatically captured and handled.

Our approach utilizes deep learning to learn regularities/patterns

from a large amount of historical exception handling code. More

specifically, we tackle the two tasks as follows:

• Try block localization. We design a locator that jointly

learns to determine whether or not a given code fragment

needs to handle exceptions and localize where to put the try

block if it does. Considering the sequential naturalness [27]

of source code, we transform the localization problem into

the sequence tagging problem [29]. To avoid the long-term

dependency problem [9], we regard the code fragment as a

sequence of statements and hierarchically encode them into

vectors so as to predict the label sequence. We first use long

short-term memory (LSTM) [28] to encode statements into

statement vectors and then use another LSTM to capture the

sequential dependency of the statement sequence. Besides,

we apply hierarchical attention mechanism [65] on top of

the two LSTMs to let the model pay attention to individual

tokens and statements.

1https://github.com/elastic/elasticsearch

public char[] decrypt(char[] chars) {
if (!isEncrypted(chars)) {

return chars;
}
String encrypted = new String(chars, ENCRYPTED_TEXT_PREFIX.length(),

chars.length - ENCRYPTED_TEXT_PREFIX.length());
byte[] bytes;
bytes = Base64.getDecoder().decode(encrypted);
byte[] decrypted = decryptInternal(bytes, encryptionKey);
return CharArrays.utf8BytesToChars(decrypted);

}

(a) A code fragment without exception handling code

public char[] decrypt(char[] chars) {
if (!isEncrypted(chars)) {

return chars;
}
String encrypted = new String(chars, ENCRYPTED_TEXT_PREFIX.length(),

chars.length - ENCRYPTED_TEXT_PREFIX.length());
byte[] bytes;
try {

bytes = Base64.getDecoder().decode(encrypted);
}
catch (IllegalArgumentException e) {

throw new ElasticsearchException("unable to decode encrypted data", e);
}
byte[] decrypted = decryptInternal(bytes, encryptionKey);
return CharArrays.utf8BytesToChars(decrypted);

}

(b) The code fragment after adding exception handling code

Figure 1: An example of exception handling

• Catch block generation. Different from previous work

such as [45], we take all the code before the catch blocks

as the context instead of simply relying on the try blocks.

Thus we consider the dependencies (e.g., how the variable

“encrypted” is initialized) for writing the exception handling

code. A simple way is to treat all the tokens before line

11 (including line 5) as a single sequence, then apply the

encoder-decoder architecture [5] to generate the tokens of

the catch block in lines 11-13 one by one. However, such a

model will not distinguish whether the tokens are inside or

outside the try block. Therefore, we propose to encode them

separately by two encoders, and fuse the context vectors

using the learned weights. Furthermore, it is obvious that

not all the tokens before the try blocks are helpful and may

be noisy data, especially for the long methods with com-

plex logic. In order to concentrate more on the dependencies

without destroying the naturalness (i.e., deleting those noisy

code), we incorporate program slicing technique [61] by tak-

ing the statements in the try blocks as the slicing criterion,

and backtracking dependencies between statements. We add

an additional attention module with masks to attend only

to the tokens in these slices. Finally, we fuse the slicing-

based context vector with the context mentioned above, and

generate code by the LSTM decoder.

We collect a large number of Java methods from popular open

source repositories in GitHub to construct datasets for the two

tasks. We conduct extensive experiments on the datasets to eval-

uate our approach and the results demonstrate the effectiveness

of our models on both tasks. More specifically, for try block lo-

calization, we achieve an accuracy of 74.7% in terms of correctly

predicted methods and an F1-score of 77.4% in terms of correctly

predicted statements. For the generation of catch block, our model

can generate the catch blocks with 22.6% exact matches and a BLEU

value of 46.7%. Both models significantly outperform the baselines.

30

Moreover, we perform a human evaluation for the generated code

and the results confirm the superiority of our model.

In summary, this paper makes the following contributions:

• We propose a novel approach to automated exception han-

dling, including two neural-network-basedmodels to localize

potential exceptions in the source code and generate code

to handle the exceptions.

• We provide two datasets with over 700K Java methods for

experiments on automated exception handling. We have

publicly released the datasets to promote further research

on this interesting topic.

• We conduct extensive experiments to evaluate our approach

using the collected datasets. We also perform a human eval-

uation. The results show that the proposed approach is ef-

fective and outperforms all baselines.

The remainder of this paper is organized as follows. Section

2 presents the problem formulation of the automated exception

handling. Section 3 describes the details of our approach. Section

4 describes datasets, evaluation procedure, and evaluation results.

We discuss our approach in Section 5. We describe threats to the

validity of this work and related work in Section 6 and Section 7,

respectively. Finally, we conclude our paper in Section 8.

2 PROBLEM FORMULATION

As illustrated in Figure 1, the problem of automated exception

handling can be decomposed into two successive tasks. The first

task is determining which statements may throw exceptions and

should be enclosed by a try block. The second task is generating

the corresponding catch blocks for handling such exceptions. For

simplification, we call the two tasks try block localization and catch

block generation, respectively. We formally define them as follows.

Try Block Localization. This task aims to localize the state-

ments in a code fragment that should be enclosed by try blocks.

Given the code fragment𝐶 = {𝑠1, 𝑠2, . . . , 𝑠𝐾 } where𝐾 is the number

of statements, the target is to find one sequenceY = {𝑦1, 𝑦2, . . . , 𝑦𝐾 },
where𝑦𝑖 = Y or Nmeans whether the statement 𝑠𝑖 is in one try block
or not. In addition, the adjacent statements with label Y should be

put in one same try block. If all statements are labelled by N, it

means that the code fragment does not need try blocks. Note that

Y may include multiple disjoint subsequences of Ys for multiple

non-nested try blocks, and we do not consider the nested try-catch

blocks in this work.

Catch Block Generation. For a try block, this task is designed

to generate code tokens to compose the corresponding one or more

catch blocks. Suppose a token sequence 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑙 } where
𝑐𝑖 (𝑖 ∈ [1, 𝑙]) means one token in the try block and the source code
before it, the target is to generate the token sequence of catch blocks

Y = {𝑦1, 𝑦2, . . . , 𝑦𝑚} so that Y can handle the exceptions of the try

block. Here Y may include multiple catch blocks for different types

of exceptions thrown by the try block.

We can automatically handle exceptions of code fragments based

on the try block localization and catch block generation. We achieve

this by learning regularities/patterns from a large amount of his-

torical exception handling code, which can be obtained by mining

open source repositories such as GitHub. In our work, we utilize

deep learning as it can better capture contextual information and

understand the semantics of source code. We design two deep neu-

ral network based models for the two tasks, and introduce our

approach in detail in the next section.

3 APPROACH

In this section, we introduce our neural network based approach to

automated exception handling, including the model for try block

localization and the model for catch block generation. Note that if

developers knowwhere the exceptions are thrown and have written

try blocks, the catch block generation can work independently to

produce the source code of corresponding catch blocks.

3.1 Try Block Localization

3.1.1 Overview. As defined above, given a code fragment without

try-catch blocks, the try block localization task is to find statement

subsequences of the code fragment that may throw exceptions and

should be enclosed by try blocks. Since all the input tokens of the

code fragment will be checked if they are inside or outside a try

block, we transform it into a sequence tagging problem [29], where

each token of the code fragment will be tagged with label Y or N

to represent whether it should be in a try block or not. If the code

fragment does not need try blocks, the labels are all Ns. This kind of

problem has been well studied in the NLP community such as Part-

of-Speech (POS) tagging [50, 52], named entity recognition (NER)

[37, 71], and semantic role labeling [59, 64]. Among these studies,

recurrent neural network (RNN) [54] based approaches show many

advantages over the traditional ones. But they were designed to

parse natural language sentences which are usually shorter than

code fragments. As a result, they suffer from the long-term depen-

dency problem [9] when applied to tag source code. Since the try

blocks are always comprised of one or multiple statements, we

propose a two-layered neural model to tag the source code, which

encodes tokens of a statement into the statement vector and tags a

code fragment at the statement level.

Figure 2 shows the overall architecture of our try block locator.

First, we split the code fragment into a sequence of statements. For

each statement, we obtain its token sequence and use the LSTM

[28] to encode the token sequence for the semantic vector of the

statement. Besides, we apply the attention mechanism [65] on the

token sequence of the statement to consider different weights of

individual tokens. After encoding all the statements of the code

fragment to a sequence of statement semantic vectors, we utilize

another LSTM to further encode the statement sequence, as well as

an attention mechanism for capturing the importance of different

statements. Finally, we adopt a binary classifier over the normalized

vectors to predict the labels of the corresponding statements.

3.1.2 Try Block Locator. Specifically, given a code fragment with-

out try-catch blocks, we obtain the sequence of statements 𝑆 in

a line-by-line manner excluding blank and comment lines. Let

𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝐾 }, where 𝐾 is the number of statements; 𝑠𝑖 =
{𝑐𝑖1 , 𝑐𝑖2 , . . . , 𝑐𝑖𝐿 }, where 𝐿 is the length of one statement 𝑠𝑖 in terms
of tokens. Given a statement 𝑠𝑖 , we first embed each token into a
vector via an embedding matrix𝑊𝑒 , that is, 𝑥𝑖𝑡 =𝑊𝑒𝑐𝑖𝑡 . We use the

LSTM network to encode 𝑠𝑖 based on the token embeddings, which
reads the token embeddings from 𝑥𝑖1 to 𝑥𝑖𝐿 to obtain the hidden

31

Figure 2: The architecture of our try block locator

states. At time step 𝑡 , the hidden state
−→
ℎ𝑖𝑡 is obtained by:

−→
ℎ𝑖𝑡 =

−−−−→
𝐿𝑆𝑇𝑀 (ℎ𝑖𝑡−1 , 𝑥𝑖𝑡), 𝑡 ∈ [1, 𝐿] . (1)

Furthermore, we adopt the Bidirectional LSTM(Bi-LSTM) [54] to

enhance the capability of capturing the context information within

the statement, where the hidden states of both directions are con-

catenated to form the new states:
←−
ℎ𝑖𝑡 =

←−−−−
𝐿𝑆𝑇𝑀 (ℎ𝑖𝑡+1 , 𝑥𝑖𝑡), 𝑡 ∈ [𝐿, 1] .

ℎ𝑖𝑡 = [
−→
ℎ𝑖𝑡 ,

←−
ℎ𝑖𝑡], 𝑡 ∈ [1, 𝐿] .

(2)

Intuitively, not all the tokens in the statement are important for

throwing an exception. To incorporate such knowledge in our

model, we exploit the attention mechanism [65] over the hidden

states to assign important tokens with higher weights and then

aggregate them to form the statement vector. The process can be

expressed as the following equations:

𝑢𝑖𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝜔ℎ𝑖𝑡 + 𝑏𝜔),

𝛼𝑖𝑡 =
𝑒𝑥𝑝 (𝑢�𝑖𝑡𝑢𝜔)∑𝐿
𝑡=1 𝑒𝑥𝑝 (𝑢

�
𝑖𝑡
𝑢𝜔)

,

𝑠𝑖 =
𝐿∑
𝑡=1

𝛼𝑖𝑡ℎ𝑖𝑡 .

(3)

As listed in Equation 3, we first transform the hidden states into

a new high-dimension space with a one-layer MLP to prepare for

scoring the importance. Thenwe compute the scores of these hidden

states by measuring how they match the fixed vector𝑢𝜔 and get the

normalized weights 𝛼𝑖𝑡 through the softmax function. Here 𝑢𝜔 acts

as the query of which token is more likely to throw an exception.

Finally, a vector representation 𝑠𝑖 of the statement is obtained by
computing the weighted sum of the hidden states.

After obtaining a sequence of statement vectors, we model the

sequential dependencies of the statements by feeding them into

another Bi-LSTM. Similarly, we get the hidden states of the state-

ments ℎ𝑖 = 𝐵𝑖𝐿𝑆𝑇𝑀 (𝑠𝑖). Next, we apply the attention mechanism
by considering different weights of statements so that:

𝑢𝑖 = 𝑡𝑎𝑛ℎ(𝑊𝑠ℎ𝑖 + 𝑏𝑠),

𝛼𝑖 =
𝑒𝑥𝑝 (𝑢�𝑖 𝑢𝑠)∑𝐿
𝑡=1 𝑒𝑥𝑝 (𝑢

�
𝑖 𝑢𝑠)

,

ℎ𝑖 = 𝛼𝑖ℎ𝑖 .

(4)

The probability of label Y for statement 𝑠𝑖 is calculated by

𝑦𝑖 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊𝑝ℎ𝑖 + 𝑏𝑝) ∈ [0, 1], (5)

where𝑊𝑝 is the weight matrix and 𝑏𝑝 is a bias term. To train the
model, we employ the binary cross-entropy loss that is defined as

L(Θ, 𝑦,𝑦) =
𝑁∑
𝑛=1

𝐿∑
𝑖=1

(−(𝑦𝑛𝑖 · 𝑙𝑜𝑔(𝑦𝑛𝑖) + (1 − 𝑦𝑛𝑖) · 𝑙𝑜𝑔(1 − 𝑦𝑛𝑖))),

(6)

where 𝑦 is the ground truth label for each statement, Θ represents

the parameters to be learned and 𝑁 is the total number of instances

in the training set. During prediction, we make the label as Y if

𝑦𝑖 ≥ 𝛿 otherwise N, where 𝛿 is the threshold.
Based on the predictions, all consecutive statements with Y labels

will be enclosed by one try block. In this way, we obtain the locations

of try blocks. Once one try block is determined in the code fragment,

we need to generate the corresponding catch blocks as well, which

will be described in the next subsection.

3.2 Catch Block Generation

3.2.1 Overview. For handling exceptions of one try block, inspired

by the success of Neural Machine Translation (NMT), we adopt the

popular encoder-decoder architecture [5] to encode the source code

before catch blocks and output a sequence of tokens in the catch

blocks. An important question here is what context should be taken

as the input for generating the catch blocks. One straightforward

solution is to only consider the source code in try blocks, as re-

cent studies [45, 51] did, because the source code before try blocks

contains much irrelevant and noisy data. In this paper, to facilitate

explanation, we call the source code before try blocks as the leading

code. For example, lines 1-7 in Figure 1(b) is the leading code. We

find that the code in a catch block may depend on some statements

(such as variable initialization) in the leading code. Therefore, as de-

picted in Figure 3, our catch block generator includes two encoders

to separately encode the leading code (i.e. the blue ones) and the

try block (i.e. the red ones), and a slicing-based attention module

(i.e. the curves) to filter out the noisy data in the leading code.

3.2.2 Catch Block Generator. We describe the three main compo-

nents of the catch block generator in detail below.

1) First, we only use the source code in the try blocks as the

input. Let𝑊 = {𝑤1,𝑤2, . . . ,𝑤𝑛} denote the token sequence of a try
block, we first encode the tokens by a Bi-LSTM with the embedding

layer to obtain the hidden states:

ℎ𝑡 = 𝐵𝑖𝐿𝑆𝑇𝑀 (𝑤𝑡 , ℎ𝑡−1). (7)

Then we use an LSTM as the decoder to decode the vector represen-

tation of one try block and generate the tokens of its catch blocks

32

Figure 3: The architecture of our catch block generator.

one by one. Specifically, when generating the 𝑖-th token at time
step 𝑖 , we update the hidden state 𝑞𝑖 of the decoder by

𝑞𝑖 = 𝐿𝑆𝑇𝑀 (𝑞𝑖−1, 𝑦𝑖−1), (8)

where 𝑦𝑖−1 is the previous token. To enhance the alignment ability
of the decoder, we adopt the attention mechanism over the hidden

states 𝐻 = {ℎ1, ℎ2, · · · , ℎ𝑛} of the encoder to compute the con-

text vector 𝑣𝑖 . For simplification, we represent 𝑣𝑖 by the following
equation:

𝑣𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑞𝑖 , 𝐻). (9)

Different from 𝑢𝜔 in Equation 3, here 𝑞𝑖 can be considered as a

query vector to learn to align the target token with the source ones.

2) Second, as mentioned before, considering only the context

of the try blocks may miss important dependency information. A

simple solution is to concatenate the leading code and the try block

into a single sequence and then train a standard encoder-decoder

model, but such amodel cannot distinguish the tokens of the leading

code from those in the try blocks. While in practice, the scope of

the try blocks does matter since the exceptions are produced within

it. To overcome the drawback, we train an additional encoder for

storing the information of the leading code. Let𝐷 = {𝑑1, 𝑑2, . . . , 𝑑𝑚}
represents the token sequence of the leading code, according to

Equation 7, we encode it by another Bi-LSTM and get the hidden

states 𝐻 ′ = {ℎ′1, ℎ
′
2, . . . , ℎ

′
𝑚}. Then we get the context vector of the

leading code by Equation 9, that is, 𝑣 ′𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑞𝑖 , 𝐻
′). We fuse

the two context vectors of the leading code and the try block by

weighted sum with one MLP layer to form the context vector 𝑉𝑐𝑖 .
3) Third, there are also many noisy tokens in the leading code

that may influence the performance of catch block generation. For

the long methods, the leading code may include many unrelated

tokens such as checking parameters or processing some data while

the try blocks do not depend on them. Therefore, we incorporate

the program slicing technique [61] to filter out the noisy tokens of

the leading code in our model. The slicing results are used to label

the tokens of leading code by 1 or 0. When applying the attention

on them, we mask the noisy tokens with 0s, which means that

the attention weights of them will be 0. In this way, this attention

module will only attend to the dependent tokens whose labels are

1s. In short, we initially take the statements in the try block as

the slicing criterion 𝑆𝐶 , and recursively backtrack statements in
the leading code that may influence the statements of 𝑆𝐶 by data

dependency to update 𝑆𝐶 . Then we get the token sequence 𝐷 ′ of

all statements in the leading code from 𝑆𝐶 , which has filtered noisy
tokens that have no influence on the try block. We use this sequence

𝐷 ′ to label any token 𝑑𝑖 in 𝐷 and get the labels 𝐿 = {𝑙1, 𝑙2, . . . , 𝑙𝑚},
where:

𝑙𝑖 =

{
1, 𝑖 𝑓 𝑑𝑖 ∈ 𝐷 ′,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(10)

We use the labels as masks and combine them with the attention

mechanism to enhance our model by considering the program

dependencies and ignoring the noisy data. Thus:

𝑉𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑞𝑖 , 𝐿 · 𝐻
′). (11)

We concatenate the slicing-based vector 𝑉𝑑𝑖 with 𝑉𝑐𝑖 and add an-
other one-layer MLP to get the final context vector 𝑉𝑖 .

Based on the context vector, we calculate the probability of gen-

erating the 𝑖-th token of the corresponding catch blocks by:

𝑝 (𝑦𝑖 |𝑦1, . . . , 𝑦𝑖−1,𝐶) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝑔𝑉𝑖 + 𝑏𝑔), (12)

where𝑊𝑔 and 𝑏𝑔 are the weight matrix and bias term, respectively,
𝐶 represents the two input sequences of the leading code and the

try block. Training such an attentional encoder-decoder model is

to minimize the loss function:

L(Θ) = −
𝑁∑
𝑖=1

𝑀∑
𝑡=1

log 𝑃 (𝑦𝑖𝑡 |𝑦
𝑖
<𝑡 ,𝐶), (13)

where Θ is the trainable parameters, 𝑁 is the total number of train-

ing instances and𝑀 is the length of each target sequence.

In practice, the trained model can predict the next token one by

one with top-𝑘 candidates by the beam search algorithm [63], and

finally generate the whole catch blocks.

4 EVALUATION

In this section, we first introduce our datasets collected fromGitHub2.

Then we conduct experiments to evaluate the effectiveness of our

models, including automatic metrics and human evaluation.

2https://github.com

33

4.1 Data Collection

To prepare exception handling code fragments, we first crawled the

repositories written in Java at GitHub and selected the top 2,000

popular ones based on their total number of stars and forks. These

popular repositories usually have high-quality source code, since

most of them carry out the code review process [42] to guarantee

the software quality. We extracted Java methods by parsing all Java

files in the repositories using ANTLR4 [49], and obtained 7,840,688

methods in total.

Obviously, not all the Java methods are useful for training our

models. There are many small and simple methods that do not

need exception handling such as get/set methods. Thus we filtered

out the methods whose source lines of code is less than 7. We also

discarded very long methods (i.e., more than 100 lines) to reduce the

possibility of overfitting [14]. Then we obtained 3,269,127 methods

for constructing our datasets.

For the try block localization task, we searched for the methods

including at least one try block and obtained 486,435 results. We

found that there were about 88,686 cases where the try block missed

the corresponding catch blocks, thus we removed these cases. We

also eliminated the methods that have nested try or catch blocks

and finally got 377,923 of them as positive samples. In addition, we

randomly selected an equal number of methods that do not have

any try block as the negative samples. In this way, we built our try

block localization dataset (namely TBLD) for evaluation.

Based on the positive samples described above, we built another

dataset for the catch block generation task. If one positive sample

has more than one non-nested try-catch pair (i.e. one try block

and the corresponding catch blocks), we split it into multiple sam-

ples which include only one try-catch pair. This produced 432,679

samples in total. However, we found that some of them exposed

an obvious bad practice, that is, catching an exception but doing

nothing. We removed them to improve the quality of these code

fragments. Finally, we obtained 351,420 samples as our catch block

generation dataset (namely CBGD).

4.2 Experimental Setup

We conduct experiments on the TBLD and CBGD datasets to eval-

uate our try block localization model and catch block generation

model, respectively. The two datasets are split into training sets,

validation sets, and testing sets with fractions of 80%, 10%, and

10%, respectively. We utilize ANTLR4 to tokenize all the code frag-

ments. The statistics of these two datasets are described in Table 1,

where MaxT, AvgT and UniqT are the maximum number of tokens,

the average number of tokens, and the total number of unique to-

kens, respectively. In the left column, MaxS and AvgS denote the

maximum and average number of statements in the Javamethods re-

spectively. The Source and Target in the right column represent the

source code before catch blocks and the catch blocks respectively.

Note that as defined in Section 2, there can be multiple try blocks

in one Java method, and each try block may have multiple catch

blocks, thus we denote the number of try blocks in one method in

the positive samples of TBLD by TryNum, and the number of catch

blocks in one try-catch pair of CBGD by CatchNum.

The configurations of our models are as follows. For the try block

localization task, we set the vocabulary size to 50k by selecting the

Table 1: The statistics of the datasets used in our study

TBLD CBGD

#Java methods 755,846 #Try-catch pairs 351,420

#TryNum=1 341,040 #CatchNum=1 324,084

#TryNum≥2 36,883 #CatchNum≥2 27,336

MaxT 6403 MaxT of Source 3,313

AvgT 115.9 AvgT of Source 113.1

MaxS 99 MaxT of Target 365

AvgS 14.7 AvgT of Target 26.5

UniqT 566,378 UniqT 214,799

most frequent words and replacing out-of-vocabulary words with

UNK, because too large vocabulary may lead to worse performance.

The embedding size and the dimensions of hidden states in LSTMs

are 128. The batch size is set to 32 and themaximum epochs is 20.We

use the best trained parameters of the 20 saved checkpoints for the

later prediction according to their performance on the validation set.

We adopt the widely-used Adam [33] as the optimizer with learning

rate 0.001 for training our model. The threshold 𝛿 for predicting
labels is 0.5 by default. For the catch block generation task, we

implement our model based on OpenNMT3. We keep the same

settings as above including the vocabulary size, embedding size and

dimension of hidden states in LSTMs of the encoder and decoder.

We set the length limits (in terms of #tokens) of the source and

target of one try-catch pair to 400 and 100, because such settings

can cover most of their original lengths. The batch size is set to 32

and the maximum iterations is 100k. When testing, we leave the

beam size 𝑘 as the default 5 since it yields good results.
All the experiments are conducted on a Ubuntu 16.04 server with

16 cores of 2.4GHz CPU, 128GB RAM and a Tesla V100 GPU with

32GB memory.

4.3 Evaluation Metrics

We evaluate the performance of different approaches on the two

tasks. For the task of try block localization, similar to the metrics

in sequence labeling [29], we use Precision, Recall and F1-score to

assess how well one approach predicts the locations of try blocks

for code fragments in the testing set of TBLD. Their values are

calculated as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
#𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑌
#𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑌

, 𝑅𝑒𝑐𝑎𝑙𝑙 =
#𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑌
#𝑔𝑜𝑙𝑑𝑌

,

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
.

Here Y represents that a statement should be enclosed by one

try block in a code fragment, and we denote it as 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑌 if it is

correctly predicted. Similarly, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑌 and 𝑔𝑜𝑙𝑑𝑌 are the predicted

and ground truth labels of Y in the corpus respectively. Besides, we

also want to know the overall ratio of methods where all statements

are correctly predicted, denoted by Accuracy.

For the task of catch block generation, we adopt the automatic

metric BLEU[48] in evaluating the quality of catch blocks. This

metric has been widely used in many similar tasks such as machine

translation [5], source code summarization [30] and API sequence

generation [24]. Given the generated code 𝑌 ′ and the ground-truth

3https://github.com/OpenNMT/OpenNMT-py

34

𝑌 , BLEU measures the 𝑛-gram precision between 𝑌 ′ and 𝑌 by com-

puting the overlap ratios of 𝑛-grams and applying brevity penalty
on short translation hypotheses. The value is computed by:

𝐵𝐿𝐸𝑈 = 𝐵𝑃 · exp
𝑁∑
𝑛=1

𝜔𝑛 log 𝑝𝑛,

where 𝑝𝑛 is the precision score of the 𝑛-gram matches between

candidate and reference sentences. The default BLEU calculates a

score for up to 4-grams using uniform weights𝜔𝑛 . 𝐵𝑃 is the brevity

penalty and defined as:

𝐵𝑃 =

{
1, 𝑖 𝑓 𝑌 ′ > 𝑌,

𝑒 (1−𝑌
′/𝑌) , 𝑖 𝑓 𝑌 ′ ≤ 𝑌 .

Likewise, we also calculate the ratio of generated catch blocks that

are exactly same with the ground-truth ones, referred to Accuracy.

4.4 Baselines

4.4.1 Try Block Localization. While many previous studies use

program analysis technique to detect and fix exception-related

errors such as string handling [20] or API misuse detection [3],

they usually relies on compilable and complete source code. We

found no existing learning-based approaches to directly predicting

the locations of try blocks for incomplete code fragments, thus we

borrow several popular models originally proposed for sequence

labeling as the baselines, including Conditional Random Field (CRF)

[36], Bidirectional LSTM (BiLSTM) [34], BiLSTM-CRF [29] and

Sequence to Sequence (Seq2Seq) [16] . We briefly introduce them

below.

• CRF. We use the linear CRF model, which is a sequence

modeling framework for processing text and has been used

for predicting program properties [2]. It takes the raw token

sequence as input and maximizes the joint probability of the

entire sequence of labels given the observation sequence.

We train a CRFTagger of NLTK toolkit [40] to tag the source

code.

• BiLSTM. This model has shown its effectiveness for model-

ing sequential data [34]. It can capture the semantics of the

words through word embedding and the sequential depen-

dency between the words through LSTM. Besides, a BiLSTM

model can access both past and future input features for a

given position and thus improves the performance. We set

the dimensions as same as our model for fair comparison.

• BiLSTM-CRF. This model is a combination of the LSTM

network and the CRF module by feeding the output vectors

of BiLSTM into a CRF layer. Since its superiority in learning

the dependency and sentence level tag information, many

studies [29, 41] use it for labeling sequences.

• Seq2Seq. As previously described, Seq2Seq models have

witnessed great success in various applications. Recently it

was applied to named entity recognition and achieved better

results than BiLSTM [16]. Therefore, we also consider it as

one baseline in our study. We use the standard attentional

encoder-decoder model to generate label sequences. The

parameter settings are the same as ours.

Table 2: The effectiveness of try block localization

Models Precision Recall F1-score Accuracy

CRF 64.7 26.9 38.0 52.4

BiLSTM 73.7 70.6 72.1 67.5

BiLSTM-CRF 51.6 59.2 55.2 54.4

Seq2Seq 77.1 60.0 67.5 48.7

Nexgen 80.9 74.3 77.4 74.7

4.4.2 Catch Block Generation. We select several commonly used

models related to code completion and generation in SE community

as comparative methods. For code completion, Language Models

(LMs) [8] such as N-gram and LSTM are widely used to model and

predict tokens of source code [26, 27, 39]. In addition, the machine

translation model Seq2Seq is also used to generate pseudo code

from source code [47] or APIs from natural language queries [24].

Thus we consider the following baselines.

• N-gram. Hindle et al. [27] first explored the naturalness of

source code with the N-gram model and applied it to predict

next tokens. A recent study [26] found that carefully adapt-

ing N-gram models for source code can yield performance

that surpasses deep-learning models. Thus we borrow the

best configuration from their work, which is a 6-gram model

with Jelinek-Mercer interpolation.

• LSTM. As a neural language model, LSTM was also used

for code completion and achieved good results [26, 38]. We

compare our approach with LSTM-based language model

and the hyperparameters are set to be the same as those in

our approach.

• Seq2Seq. There are many Seq2Seq-based applications in

software engineering. For instance, Oda et al. [47] used a

statistical Seq2Seq model to generate pseudo code given the

source code. Recently, the attentional Seq2Seq model [5]

has proven to be more effective, so we use this model for

comparison. The model configurations are the same as those

used in our model.

4.5 Results

We investigate the following research questions to present the

experimental results and analysis.

RQ1: How does our approach perform compared with base-

lines in try block localization?

To keep the results of our approach Nexgen comparable with those

of baselines, we transform the predicted token-level labels of base-

lines into statement-level ones by making one statement label as Y

if any token in it is predicted Y, otherwise N. Table 2 provides the

experimental results of all the compared models. The best results

are shown in bold.

It is clear that the CRF model performs worst among them. Al-

though it has a good precision, the recall is quite low and so is

F1-score. This means that there are few predicted try block loca-

tions in its results, which is confirmed by our manual inspection.

As a result, the accuracy is only 52.4% since most of the predictions

are all Ns, that is, it is prone to omit the exceptions.

35

Table 3: The effectiveness of catch block generation

Groups Models BLEU Accuracy

Partial Context N-gram 6.7 0.0

LSTM 27.5 8.2

Seq2Seq 38.0 18.9

Full Context N-gram 5.0 0.0

LSTM 29.4 8.1

Seq2Seq 42.6 20.7

Nexgen 46.7 22.6

By contrast, neural network based models achieve much better

results. For example, the F1-score of BiLSTM is 72.1%, which out-

performs CRF by more than 30%. This may be largely attributed to

its ability to understanding semantics through word embedding. Be-

cause in CRF, the tokens are represented as numbers, which makes

the features very sparse. In addition, it captures the dependencies

between tokens by combining past and future information, which

helps determine whether to predict the Y label when encountering

a specific token (e.g., a predefined variable). Nevertheless, the per-

formance drops more than 10% in terms of F1-score or Accuracy

when combining them together (i.e., BiLSTM-CRF). Intuitively, the

worse performance of the CRF module impairs the whole model. A

deeper reason is that adding the CRF layer forces it to optimize the

log-likelihood on the sequence level, whereas it is demonstrated to

be not effective if using CRF independently. With regard to Seq2Seq,

a surprising phenomenon is that it performs as well as BiLSTM such

as the precision of 77.1%. But the Accuracy is only 48.7%, which

is even lower than that of CRF. We inspected its predictions and

found that it tends to generate shorter label sequences than the

ground truth, indicating that it cannot tag the token sequence in

a one-for-one manner due to the limitation of encoder-decoder

architecture on this task.

At last, our approach achieves the best results among all the

models. For example, it improves BiLSTM by 5.3% (F1-score) and

7.2% (Accuracy). The reason is that our model use a two-layered

neural architecture to tag the source code at the statement level,

which can significantly shorten the length of prediction time steps

and get rid of the long-term dependency problem. As depicted in

Table 1, the average length of Java methods in terms of tokens is

115.9 (AvgT), while it is only 14.7 (AvgS) in terms of statements. In

addition, we employ attention mechanism at both token and state-

ment levels, and thus can learn the distinction between important

and unimportant elements.

RQ2: How does our approach perform in comparison with

the baselines in generating catch block code ?

In this research question, we want to know how our approach and

the baselines perform in generating catch block code and whether

different contexts affect the performance. As shown in Table 3,

we consider two different contexts: only the try blocks (Partial

Context), the leading code and the try blocks (Full Context). For

evaluation, we limit the length of the generated code to 100 because

the LM-based models tend to generate very long sequences.

First, we can see that as a statistical language model, N-gram

performs badly in this task. In particular, the BLEU score is only

6.7%, which is far from satisfaction. It is of no avail to use the

full context for training such a model, and the performance even

decreases a bit. The reason is that N-gram model only learns the

probability of the next token within a fixed window (i.e., 6 tokens),

no matter what the input is. It fails to capture enough context

information. We also found that most of the generated code does

not adhere to Java syntax, which may explain why its accuracy is 0.

In contrast, LSTM achieves better results, since LSTM can capture

more dependency information. When given the full context, LSTM

learns to generate more correct tokens than the partial context

and improves the BLEU value. However, the full context may lead

to more noisy data from the leading code and make the accuracy

slightly lower.

The Seq2Seq model shows a significant improvement over N-

gram and LSTM. Because Seq2Seq separates the precondition (i.e.,

the leading code and try blocks) and the learning object (i.e., the

catch blocks) into two different sequences, and can learn the knowl-

edge of try blocks and catch blocks without interference, whereas

the LM-based models predict tokens in a whole sequence. Also, the

attention mechanism in Seq2Seq helps capture different weights of

tokens in the encoder. Compared with the partial context, the full

context also leads to an improvement, such as 4.6% higher in terms

of BLEU, which shows that the leading code is actually helpful in

Seq2Seq.

Our approach Nexgen outperforms all the baselines. Specifically,

we improve the attentional Seq2Seq model by 4.1% and 1.9% in

terms of BLEU andAccuracy, respectively. The reason is thatNexgen

encodes the leading code and try blocks separately, and uses slicing-

based attention to eliminate the noisy data from the leading code.

RQ3: To what extent does the components of our proposed

models contribute to the effectiveness of both tasks?

This research question aims at analyzing the contributions of dif-

ferent components of our model to the overall effectiveness. We

conduct an ablation study to answer this RQ. The results are shown

in Table 4.

We start with the try block localization task (Task1). We eval-

uate the influence of removing two main attention modules from

our original model (Nexgen). When replacing the token-level atten-

tion by the last time step of token encoder, we find that the recall

becomes a bit higher from 74.3% to 74.8%, yet the F1-score and

Accuracy decline by 0.5% and 0.6%. This indicates that the token-

level attention indeed captures some more token-level semantics.

Similarly, the performance also gets worse and the F1-score and

Accuracy decrease by 0.8% and 0.9% when removing the statement-

level attention. We can see that the statement attention contributes

more to the overall performance than the token attention. If we

remove both of the attention modules, the F1-score and Accuracy

drops by 1.3% and 1.7%, respectively.

For the task of catch block generation (Task2), we obtained simi-

lar results. We first remove the standard attention over the leading

code (Leading attention). The drops of BLEU and Accuracy show

that different tokens in the leading code actually have different

weights for capturing the code semantics. However, compared with

removing slicing-based attention, the BLEU score of removing lead-

ing attention is 1.2% higher. This means that it is more effective

to capture the dependencies in the leading code of the try blocks

than the standard attention. Next, we remove slicing attention and

36

Table 4: The effect of model components on two tasks. The minus ‘−’ symbol means removing one component from Nexgen

Task1 Task2

Description Precision Recall F1-score Accuracy Description BLEU Accuracy

− Token Attention 79.3 74.8 76.9 74.1 − Leading Attention 45.4 22.1

− Statement Attention 79.5 74.9 76.6 73.8 − Slicing Attention 44.2 22.0

− Both Attention 78.9 74.3 76.1 73.0 − Both Attention 30.2 14.5

Nexgen 80.9 74.3 77.4 74.7 Nexgen 46.7 22.6

Table 5: The score distribution of the generated catch blocks

Score 1 2 3 4 5 6 7 Avg ≥6 ≤3

N-gram 70 21 8 0 1 0 0 1.41 0 99

LSTM 15 20 15 17 19 5 9 3.56 14 50

Seq2Seq 8 8 15 20 15 9 25 4.53 34 31

Nexgen 9 4 12 17 13 12 33 4.89 45 25

replace leading attention over the leading code with just the last

time step of the leading code encoder. It can be seen that the perfor-

mance degrades significantly by 16.5% (BLEU) and 8.1% (Accuracy),

indicating that the leading code indeed introduces noisy data and

influences the performance.

In summary, the token-level attention and statement-level atten-

tion components of the try block locator have a relatively small in-

fluence on the performance, while the leading attention and slicing-

based attention mechanisms of the catch block generator are more

effective and contribute significantly to the overall performance.

4.6 Human Evaluation

For the task of catch block generation, we use the quantitative met-

ric BLEU to compare the code generated by different methods. BLEU

calculates the textual similarity between the reference and the gen-

erated code, rather than the semantic similarity. Thus we perform

human evaluation to complement the quantitative evaluation.

We invite 12 evaluators to assess the quality of catch block code

generated by our approach Nexgen and the three baselines. They

are undergraduate, master and Ph.D. students in CS with 1-6 years

of experience in Java programming. The three baselines N-gram,

LSTM and Seq2Seq are selected from the better ones in the partial

or full context. We randomly choose 100 try-catch pairs from the

testing set of CBGD and their catch block code produced by the

three baselines and our approach, and evenly divide them into four

groups. Each group is assigned to three different evaluators since

such redundancy can help obtain more consistent results. For each

try-catch pair, we show its leading code and try block, the refer-

ence catch blocks, and four results of catch blocks generated by

the three baselines and our approach. The four generated results

of catch blocks are randomly ordered, thus the evaluators have

no idea which catch block code is produced by which approach.

The evaluators can select a score between 1 to 7 to measure the

semantic similarity between the generated catch blocks and the

reference, where 1 means “Not Similar At All” and 7 means “Highly

Similar/Identical”. The higher scores mean that the corresponding

generated catch blocks are more semantically similar to the refer-

ence. For each generated result of catch blocks, we get three scores

from evaluators and choose the median value as the final score.

Table 5 shows the score distribution of the generated catch blocks.

We can see that our approach achieves the best scores and improves

the average (Avg) score from 1.41 (N-gram), 3.56 (LSTM) and 4.53

(Seq2Seq) to 4.89. Specifically, among the randomly selected 100

try-catch pairs, our approach can generate 33 highly similar or

even identical catch blocks with the reference ones (score = 7), 45

good catch blocks (score ≥ 6). Our approach also receives the small-

est number of negative results (score ≤ 3). Based on the 100 final

scores for each approach of N-gram, LSTM, Seq2Seq and Nexgen,

we conduct Wilcoxon signed-rank tests [62]. Comparing our ap-

proach with N-gram, LSTM, and Seq2Seq, the p-values of Wilcoxon

signed-rank tests at 95% confidence level are 2.2e-16, 4.5e-09 and

0.0076, respectively, showing that the improvements achieved by

our approach are statistically significant. In summary, the results

of human evaluation confirm the effectiveness of the proposed

approach.

5 DISCUSSION

5.1 Case study

Nowwe discuss the superiority and limitation of ourmodel for catch

block generation by analyzing two examples, which are shown in

Table 6. Example 1 shows one incomplete Java method “add” includ-

ing the leading code and try block. The developer wants to catch

“IllegalStateException” thrown by “map.put” in the try block when

multiple objects write data into the map and incur conflicts. Then

the catch block handles the exception by converting and throwing

the exception to notify upper-layer methods. In the full context,

N-gram generates very long code with wrong Java syntax (we omit

94 more tokens here). Since there are many noisy statements in

the leading code, LSTM and Seq2Seq fail to report the proper ex-

ception type. For example, Seq2Seq generates ClassCastException.

By contrast, Nexgen correctly predicts the exception type and the

whole catch block, since Nexgen treats the leading code and the try

block separately, and uses the slicing-based attention to remove

irrelevant and noisy statements.

Although Nexgen outperforms the baselines, we do not claim

that it has already matured and is ready for use in practice. Indeed,

our approach only makes one step further towards automated ex-

ception handling and it still has some limitations. In Example 2,

although our approach successfully predicts the exception type

FileNotFoundException, it fails to correctly handle it in the catch

block. Specifically, it logs the event maybe because logging informa-

tion for FileNotFoundException is a very common behavior in the

training set. But the correct exception handling code is to set “map-

ping” as null, which possibly relies on the project-specific features

37

Table 6: Two examples of catch block generation

Example 1 Example 2

Code public void add (Session session , Row row) {

TransactionMap <Value , Value > map =

getMap (session) ;

ValueArray array = convertToKey (row , null) ;

boolean checkRequired =

indexType . isUnique ()&&

! mayHaveNullDuplicates (row) ;

i f (checkRequired) {

checkUnique (map , array , Long . MIN_VALUE) ;

}

try {

map . put (array , ValueNull . INSTANCE) ;

}

private boolean revalidate (boolean flag) {

i f (mapping==null | | flag) {

File catalog = findFile (dtdSetFolder ,

CATALOG_FILE_NAME) ;

i f (catalog == null) { mapping = null ; }

e l se

try {

mapping = parseCatalog (new

InputStreamReader (

new FileInputStream (catalog))) ;

}

Reference catch (IllegalStateException e) { throw

mvTable . convertException (e) ; }

catch (FileNotFoundException exc) { mapping = null ; }

N-gram catch (f ina l IOException x) ; . . . (9 4 more tokens) catch (IOException ioe) { throw new

KafkaCruiseControlException (e) ; . . . (8 9 more

tokens)

LSTM catch (Exception e) { throw new

RuntimeException (e) ; }

catch (IOException e) { throw new

RuntimeException (e) ; }

Seq2Seq catch (ClassCastException e) { throw new

UnsupportedOperationException () ; }

catch (IOException exc) { return fa l s e ; }

Nexgen catch (IllegalStateException e) { throw

mvTable . convertException (e) ; }

catch (FileNotFoundException exc) {

Logger . getLogger (<unk > . c l a s s . getName ()) .

log (Level . INFO , null , exc) ; }

and personal preferences of developers. Our approach also encoun-

ters the problem of out of vocabulary and replaces the class name

with “<unk>”. In our future work, we will improve our approach by

incorporating the knowledge of the exception specifications from

projects and designing mechanisms that can overcome the large

vocabulary problem.

5.2 Why is Nexgen better?

As stated previously, learning to handle exceptions includes two

main successive tasks: finding potential exceptions and writing

code to handle them. The common challenge of them is how to

understand the semantics of given code snippets. Compared with

traditional approaches, Nexgen learns the semantics of code from

the following two aspects.

First, traditional approaches like static analysis or N-gram model

have been applied in finding string-handling errors [20] or recom-

mending exception-handling APIs [45], but they ignore the seman-

tics of tokens (e.g., treating them as numerical IDs). In contrast, Nex-

gen adopts the word embedding technique to automatically learn

the semantics of tokens by mapping them into a high-dimensional

vector space. This is a fundamental component of many deep learn-

ing based approaches to code analysis [1, 24] because tokens with

similar embeddings tend to be used in similar contexts, which helps

determine whether a same/similar exception would occur and how

it can be handled. For example, even the Java tokens “AudioInput-

Stream” and “StringBufferInputStream” have different names, they

are used in similar contexts and thus possibly throw the “IOExcep-

tion”. Therefore, ignoring the semantics of tokens may lead to a

wrong result.

Second, it is also necessary to know the deep semantics by un-

derstanding dependencies in source code. Statistical models (e.g.,

N-gram) consider only the probability distribution of code tokens

andmay have a poor performance. Program analysis can analyze the

data-flow and control-flow dependencies, which has been shown

effective for compilable and complete source code. Unlike them,

Nexgen learns the internal dependencies within methods for in-

complete code fragments. On the one hand, similar to existing

studies [23, 69], it utilizes the LSTM to capture the sequential de-

pendencies [70] of tokens and statements, so that exception-prone

statements can be identified based on the context. As shown in

Example 1 of Table 6, Nexgen identified the statement “map.put”

instead of “convertToKey” as the exceptional one because the state-

ment “checkUnique” is already used to check the variables, hence

it only needs to check the latter statement. On the other hand,

when generating catch blocks, Nexgen can learn the explicit data

dependencies for eliminating noisy data from the leading code by

the standard attention and our slicing-based attention mechanisms.

In this way, Nexgen can understand the deep code semantics by

capturing the sequential dependencies and the data dependencies

in code fragments.

6 THREATS TO VALIDITY

There are three main threats to validity of our evaluation.

• In this work, we only collected Java source code to construct

the datasets for out tasks. It remains unknown whether our

approachwill performwell on other programming languages

such as C# and Python. However, we believe Java is repre-

sentative because of its popularity in real-world software

applications. In our future work we will collect data from

programs in different programming languages to further

evaluate the proposed approach.

38

• The quality of the Java methods may affect the effectiveness

of our approach. To mitigate it, we selected top 2,000 projects

at GitHub as corpus by the numbers of their stars and forks,

which indicate their impact and popularity. We filter out

simple methods (e.g., get/set methods) that have less than 7

lines of code. We also discard the exception handling code

with bad practices, for example, swallowing exceptions. Still,

we cannot guarantee that all data we collected is of high

quality. We will explore effective techniques to improve data

quality in the future.

• There may exist some score bias in the human evaluation,

since developers can make different judgements on the same

generated code according to their different experiences. Hence,

each generated code is assigned to three redundant evalua-

tors and we take the median value as the final score to reduce

the bias.

7 RELATEDWORK

7.1 Exception handling

Many studies have been conducted to understand exception han-

dling practices [12, 13, 19, 55]. For example, Sena et al. [55] inves-

tigated potential impact of the exception handling strategies on

the client applications by exception flow analysis and manual in-

spections. They found that 20.71% of the bug reports are related

to the anti-patterns of exception handling. Padua et al. [19] per-

formed an empirical study of the relationship between exception

handling practices and software quality (measured by the probabil-

ity of having post-release defects). The case study on open-source

Java and C# projects showed that exception flow characteristics

in Java projects have a significant relationship with post-release

defects. Even so, previous studies revealed that developers tend to

avoid it or misuse exception handling because they consider it hard

to learn and to use [4, 10, 32, 57]. For example, Cabral et al. [10]

studied exception handling practices from 32 projects in both Java

and .Net and unveiled suboptimal practice of exception handling by

developers. Shah et al. [57] interviewed Java developers in order to

contrast the viewpoints of experienced and inexperienced develop-

ers regarding exception handling. They recognized that developers

tend to ignore the proper implementation of exception handling

until defects are found, although developers should do it in the

early releases of a system. All these studies indicate that there is a

need for automatic techniques to facilitate the writing of exception

handling code for developers.

Meanwhile, prior research also explored different kinds of ap-

proaches to exception handling [6, 11, 45, 51, 58]. Cabral et al. [11]

proposed a prototype transactional model that aims at automati-

cally recovering runtime environments at the platform level, in-

stead of writing exception handling code. Although this proposal

is promising, its overhead is high and its precision is low due to

the complexity of exceptions. Subsequent research focuses on rec-

ommending source code related information to aid programming

practice. For example, Barbosa et al. [6] proposed a heuristic strat-

egy that is aware of the global context of exceptions and produces

recommendations on the violations of exception handling. Nguyen

et al. [45] proposed a fuzzy and N-gram based approach to recom-

mend exception types and repairing method calls for exception

handling code. Such approaches can provide useful knowledge to

assist developers in writing exception handling code, but develop-

ers still need to design the whole logic of exception handling and

modify the code to fit the context. Compared with previous work,

we provide a deep learning based approach to automated exception

handling, which can predict the locations of try blocks and generate

the complete catch blocks.

7.2 Code completion and generation

There exists a rich literature of research work on code completion

in SE, most of which relies on language models (LMs). For example,

Hindle et al. [27] used the N-gram model on lexical tokens to pre-

dict the next token. Hellendoorn et al. [26] performed an extensive

comparison between N-gram and LSTM-based LMs for source code,

and concluded that N-gram models can outperform LSTM mod-

els if carefully adapted. Apart from token-level code completion,

Nguyen et al. [44] combined program analysis and statistical LM

in the process of statement completion. Recently, some research

intends to generate code in various scenarios [17, 24, 47, 60]. For

example, Oda et al. [47] used a statistical machine translation model

to generate pseudo code given the source code. Tufano et al. [60]

investigated the NMT model (also called Seq2Seq) on pairs of code

components before and after the implementation of the changes

provided in the pull requests. Their results showed that NMT can

automatically replicate the changes implemented by developers

during pull requests. Similarly, Chen et al. [17] proposed a neural

model based on Seq2Seq, which learns from pairs of the original

version and fixed version of buggy programming lines. There are

also some recent studies in NLP community, which propose neu-

ral network based models to generate code from natural language

descriptions [31, 66]. Different from the above work, our work

generates exception handling code instead of general code.

8 CONCLUSION

In this paper, we propose a novel deep learning based approach to

automated exception handling.We decompose the problem into two

coherent tasks, namely try block localization and catch block gen-

eration, whose targets are to recognize potential exceptions within

a Java method and generate code to handle them, respectively. For

both tasks, we design neural models with attention mechanisms

to capture deep semantics. We conduct extensive experiments to

evaluate our approach. All results demonstrate the superiority of

our models on both tasks. Although our results are significantly

better that those of the baselines, they can still be improved before

being applied in practice. Our work can be considered as one of the

first steps towards automated exception handling and we hope it

can inspire follow-up research work.

Our source code and experimental data are available at https:

//github.com/zhangj111/nexgen.

ACKNOWLEDGMENTS

This work was supported partly by National Key Research and De-

velopment Program of China (No.2018YFB1004805), partly by Na-

tional Natural Science Foundation of China (No.61702024, 61932007,

61972013 and 61421003) and ARC DP200102940.

39

REFERENCES
[1] Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton. 2015. Sug-

gesting accurate method and class names. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering. 38–49.

[2] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2018. A general path-
based representation for predicting program properties. In Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and Implementation.
404–419.

[3] Sven Amann, Hoan Anh Nguyen, Sarah Nadi, Tien N Nguyen, and Mira Mezini.
2018. A systematic evaluation of static api-misuse detectors. IEEE Transactions
on Software Engineering 45, 12 (2018), 1170–1188.

[4] Muhammad Asaduzzaman, Muhammad Ahasanuzzaman, Chanchal K Roy, and
Kevin A Schneider. 2016. How developers use exception handling in Java?. In
2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR).
IEEE, 516–519.

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural ma-
chine translation by jointly learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR 2015.

[6] Eiji Adachi Barbosa and Alessandro Garcia. 2017. Global-aware recommendations
for repairing violations in exception handling. IEEE Transactions on Software
Engineering 44, 9 (2017), 855–873.

[7] Eiji Adachi Barbosa, Alessandro Garcia, Martin P Robillard, and Benjamin Jakobus.
2015. Enforcing exception handling policies with a domain-specific language.
IEEE Transactions on Software Engineering 42, 6 (2015), 559–584.

[8] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. 2003. A
neural probabilistic language model. Journal of machine learning research 3, Feb
(2003), 1137–1155.

[9] Yoshua Bengio, Paolo Frasconi, and Patrice Simard. 1993. The problem of learning
long-term dependencies in recurrent networks. In IEEE international conference
on neural networks. IEEE, 1183–1188.

[10] Bruno Cabral and Paulo Marques. 2007. Exception handling: A field study in
java and. net. In European Conference on Object-Oriented Programming. Springer,
151–175.

[11] Bruno Cabral and Paulo Marques. 2008. A case for automatic exception han-
dling. In 2008 23rd IEEE/ACM International Conference on Automated Software
Engineering. IEEE, 403–406.

[12] Nélio Cacho, Eiji Adachi Barbosa, Juliana Araujo, Frederico Pranto, Alessandro
Garcia, Thiago Cesar, Eliezio Soares, Arthur Cassio, Thomas Filipe, and Israel
Garcia. 2014. How does exception handling behavior evolve? an exploratory study
in java and c# applications. In 2014 IEEE International Conference on Software
Maintenance and Evolution. IEEE, 31–40.

[13] Nélio Cacho, Thiago César, Thomas Filipe, Eliezio Soares, Arthur Cassio, Rafael
Souza, Israel Garcia, Eiji Adachi Barbosa, and Alessandro Garcia. 2014. Trading
robustness for maintainability: an empirical study of evolving c# programs. In
Proceedings of the 36th International Conference on Software Engineering. 584–595.

[14] Rich Caruana, Steve Lawrence, and C Lee Giles. 2001. Overfitting in neural nets:
Backpropagation, conjugate gradient, and early stopping. In Advances in neural
information processing systems. 402–408.

[15] Chien-Tsun Chen, Yu Chin Cheng, Chin-Yun Hsieh, and I-Lang Wu. 2009. Excep-
tion handling refactorings: Directed by goals and driven by bug fixing. Journal
of Systems and Software 82, 2 (2009), 333–345.

[16] Lingzhen Chen and Alessandro Moschitti. 2018. Learning to Progressively Rec-
ognize New Named Entities with Sequence to Sequence Models. In Proceedings
of the 27th International Conference on Computational Linguistics. 2181–2191.

[17] Zimin Chen, Steve James Kommrusch, Michele Tufano, Louis-Noël Pouchet,
Denys Poshyvanyk, and Martin Monperrus. 2019. Sequencer: Sequence-to-
sequence learning for end-to-end program repair. IEEE Transactions on Software
Engineering (2019).

[18] Roberta Coelho, Awais Rashid, Alessandro Garcia, Fabiano Ferrari, Nélio Cacho,
Uirá Kulesza, Arndt von Staa, and Carlos Lucena. 2008. Assessing the impact
of aspects on exception flows: An exploratory study. In European Conference on
Object-Oriented Programming. Springer, 207–234.

[19] Guilherme B de Pádua and Weiyi Shang. 2018. Studying the relationship between
exception handling practices and post-release defects. In Proceedings of the 15th
International Conference on Mining Software Repositories. 564–575.

[20] Aritra Dhar, Rahul Purandare, Mohan Dhawan, and Suresh Rangaswamy. 2015.
CLOTHO: saving programs frommalformed strings and incorrect string-handling.
In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineer-
ing. 555–566.

[21] Alessandro F Garcia, Cecılia MF Rubira, Alexander Romanovsky, and Jie Xu. 2001.
A comparative study of exception handling mechanisms for building dependable
object-oriented software. Journal of systems and software 59, 2 (2001), 197–222.

[22] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. 2000. The Java language
specification. Addison-Wesley Professional.

[23] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE). IEEE,
933–944.

[24] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep
API learning. In Proceedings of the 2016 24th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering. ACM, 631–642.

[25] Anders Hejlsberg, Scott Wiltamuth, and Peter Golde. 2003. C# language specifi-
cation. Addison-Wesley Longman Publishing Co., Inc.

[26] Vincent J Hellendoorn and Premkumar Devanbu. 2017. Are deep neural networks
the best choice for modeling source code?. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering. 763–773.

[27] Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.
2012. On the naturalness of software. In 2012 34th International Conference on
Software Engineering (ICSE). IEEE, 837–847.

[28] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[29] Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirectional LSTM-CRF models for
sequence tagging. arXiv preprint arXiv:1508.01991 (2015).

[30] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016.
Summarizing source code using a neural attention model. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), Vol. 1. 2073–2083.

[31] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2018.
Mapping Language to Code in Programmatic Context. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing. 1643–1652.

[32] Mary Beth Kery, Claire Le Goues, and Brad A Myers. 2016. Examining program-
mer practices for locally handling exceptions. In 2016 IEEE/ACM 13th Working
Conference on Mining Software Repositories (MSR). IEEE, 484–487.

[33] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[34] Eliyahu Kiperwasser and Yoav Goldberg. 2016. Simple and accurate dependency
parsing using bidirectional LSTM feature representations. Transactions of the
Association for Computational Linguistics 4 (2016), 313–327.

[35] George J Klir and Bo Yuan. 1996. Fuzzy sets and fuzzy logic: theory and applica-
tions. Possibility Theory versus Probab. Theory 32, 2 (1996), 207–208.

[36] John D Lafferty, Andrew McCallum, and Fernando CN Pereira. 2001. Conditional
Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data.
In Proceedings of the Eighteenth International Conference on Machine Learning.
282–289.

[37] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami,
and Chris Dyer. 2016. Neural Architectures for Named Entity Recognition. In
Proceedings of the 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. 260–270.

[38] Jian Li, Yue Wang, Michael R. Lyu, and Irwin King. 2018. Code Completion with
Neural Attention and Pointer Networks. In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI-18. 4159–4165.

[39] Chang Liu, Xin Wang, Richard Shin, Joseph E Gonzalez, and Dawn Song. 2016.
Neural code completion. (2016).

[40] Edward Loper and Steven Bird. 2002. NLTK: The Natural Language Toolkit.
In Proceedings of the ACL-02 Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Computational Linguistics.

[41] Xuezhe Ma and Eduard Hovy. 2016. End-to-end Sequence Labeling via Bi-
directional LSTM-CNNs-CRF. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). 1064–1074.

[42] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E Hassan. 2016.
An empirical study of the impact of modern code review practices on software
quality. Empirical Software Engineering 21, 5 (2016), 2146–2189.

[43] Robert Miller and Anand Tripathi. 1997. Issues with exception handling in
object-oriented systems. In European Conference on Object-Oriented Programming.
Springer, 85–103.

[44] Son Nguyen, Tien Nguyen, Yi Li, and Shaohua Wang. 2019. Combining Program
Analysis and Statistical Language Model for Code Statement Completion. In
2019 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 710–721.

[45] Tam Nguyen, Phong Vu, and Tung Nguyen. 2019. Recommending exception
handling code. In 2019 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 390–393.

[46] Ana Filipa Nogueira, José CB Ribeiro, and Mário A Zenha-Rela. 2017. Trends on
empty exception handlers for Java open source libraries. In 2017 IEEE 24th Inter-
national Conference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 412–416.

[47] Yusuke Oda, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata, Sakriani Sakti,
Tomoki Toda, and Satoshi Nakamura. 2015. Learning to generate pseudo-code
from source code using statistical machine translation (t). In 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 574–584.

[48] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a
method for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting on association for computational linguistics. Association for
Computational Linguistics, 311–318.

[49] Terence Parr. 2013. The definitive ANTLR 4 reference. Pragmatic Bookshelf.

40

[50] Juan Antonio Perez-Ortiz and Mikel L Forcada. 2001. Part-of-speech tagging
with recurrent neural networks. In IJCNN’01. International Joint Conference on
Neural Networks. Proceedings (Cat. No. 01CH37222), Vol. 3. IEEE, 1588–1592.

[51] MohammadMasudur Rahman and Chanchal K Roy. 2014. On the use of context in
recommending exception handling code examples. In 2014 IEEE 14th International
Working Conference on Source Code Analysis and Manipulation. IEEE, 285–294.

[52] Adwait Ratnaparkhi. 1996. Amaximum entropymodel for part-of-speech tagging.
In Conference on Empirical Methods in Natural Language Processing.

[53] Martin P Robillard and Gail C Murphy. 2003. Static analysis to support the
evolution of exception structure in object-oriented systems. ACM Transactions
on Software Engineering and Methodology (TOSEM) 12, 2 (2003), 191–221.

[54] Mike Schuster and Kuldip K Paliwal. 1997. Bidirectional recurrent neural net-
works. IEEE transactions on Signal Processing 45, 11 (1997), 2673–2681.

[55] Demóstenes Sena, Roberta Coelho, Uirá Kulesza, and Rodrigo Bonifácio. 2016.
Understanding the exception handling strategies of Java libraries: An empirical
study. In Proceedings of the 13th International Conference on Mining Software
Repositories. 212–222.

[56] Hina Shah, Carsten Görg, and Mary Jean Harrold. 2008. Why do developers
neglect exception handling?. In Proceedings of the 4th international workshop on
Exception handling. 62–68.

[57] Hina Shah, Carsten Gorg, and Mary Jean Harrold. 2010. Understanding exception
handling: Viewpoints of novices and experts. IEEE Transactions on Software
Engineering 36, 2 (2010), 150–161.

[58] Suresh Thummalapenta and Tao Xie. 2009. Mining exception-handling rules as
sequence association rules. In 2009 IEEE 31st International Conference on Software
Engineering. IEEE, 496–506.

[59] Kristina Toutanova, Aria Haghighi, and Christopher D Manning. 2005. Joint
learning improves semantic role labeling. In Proceedings of the 43rd Annual Meet-
ing on Association for Computational Linguistics. Association for Computational
Linguistics, 589–596.

[60] Michele Tufano, Jevgenija Pantiuchina, Cody Watson, Gabriele Bavota, and
Denys Poshyvanyk. 2019. On learning meaningful code changes via neural
machine translation. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 25–36.

[61] Mark Weiser. 1984. Program slicing. IEEE Transactions on software engineering 4
(1984), 352–357.

[62] Frank Wilcoxon, SK Katti, and Roberta A Wilcox. 1970. Critical values and
probability levels for the Wilcoxon rank sum test and the Wilcoxon signed rank
test. Selected tables in mathematical statistics 1 (1970), 171–259.

[63] Sam Wiseman and Alexander M Rush. 2016. Sequence-to-Sequence Learning as
Beam-Search Optimization. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing. 1296–1306.

[64] Nianwen Xue and Martha Palmer. 2004. Calibrating features for semantic role
labeling. In Proceedings of the 2004 Conference on Empirical Methods in Natural
Language Processing. 88–94.

[65] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard
Hovy. 2016. Hierarchical attention networks for document classification. In
Proceedings of the 2016 conference of the North American chapter of the association
for computational linguistics: human language technologies. 1480–1489.

[66] Pengcheng Yin and Graham Neubig. 2017. A Syntactic Neural Model for General-
Purpose Code Generation. In Proceedings of the 55th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long Papers). 440–450.

[67] Ding Yuan, You Luo, Xin Zhuang, Guilherme Renna Rodrigues, and Xu Zhao. 2014.
Simple Testing Can Prevent Most Critical Failures. In 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14).

[68] Benwen Zhang and James Clause. 2014. Lightweight automated detection of
unsafe information leakage via exceptions. In Proceedings of the 2014 International
Symposium on Software Testing and Analysis. 327–338.

[69] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. 2020.
Retrieval-based neural source code summarization. In Proceedings of the 42nd
International Conference on Software Engineering. IEEE.

[70] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong
Liu. 2019. A novel neural source code representation based on abstract syntax
tree. In 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 783–794.

[71] GuoDong Zhou and Jian Su. 2002. Named entity recognition using an HMM-
based chunk tagger. In proceedings of the 40th Annual Meeting on Association for
Computational Linguistics. Association for Computational Linguistics, 473–480.

41

