
An Empirical Study on Fine-tuning Large Language
Models of Code for Automated Program Repair
Kai Huang∗†∥, Xiangxin Meng‡, Jian Zhang§¶, Yang Liu§, Wenjie Wang∗, Shuhao Li†, Yuqing Zhang∗†¶

∗University of Chinese Academy of Sciences, Beijing, China
†Zhongguancun Laboratory, Beijing, China

‡Beihang University, Beijing, China
§Nanyang Technological University, Singapore

huangk@nipc.org.cn, mengxx@act.buaa.edu.cn, jian zhang@ntu.edu.sg, yangliu@ntu.edu.sg,
wangwj@ucas.ac.cn, lishuhao@zgclab.edu.cn, zhangyq@nipc.org.cn

Abstract—The advent of large language models (LLMs) has
opened up new opportunities for automated program repair
(APR). In particular, some recent studies have explored how to
leverage large language models of code (LLMCs) for program
repair tasks and show promising results. However, most of
them adopt the zero/few-shot learning paradigm for APR, which
directly use LLMCs to generate the possibly correct code given its
surrounding context. Though effective, the repair capabilities of
LLMCs based on the fine-tuning paradigm have yet to be exten-
sively explored. Also, it remains unknown whether LLMCs have
the potential to repair more complicated bugs (e.g., multi-hunk
bugs). To fill the gap, in this work, we conduct a comprehensive
study on the program repair capability of LLMCs in the fine-
tuning paradigm. We select 5 popular LLMCs with representative
pre-training architectures, including CodeBERT, GraphCode-
BERT, PLBART, CodeT5, and UniXcoder. We consider 3 typical
program repair scenarios (i.e., bugs, vulnerabilities, and errors)
involving 3 programming languages (i.e., Java, C/C++, and
JavaScript). Notably, we take both single-hunk and multi-hunk
bugs/vulnerabilities into account. We then fine-tune them on
widely-used datasets and compare them with existing state-of-the-
art APR tools. We also investigate the impact of different design
choices, which include code abstractions, code representations,
and model evaluation metrics. Our experimental results show that
LLMCs in the fine-tuning paradigm can significantly outperform
previous state-of-the-art APR tools. Through in-depth analysis,
we provide insights into choosing appropriate strategies to
guide LLMCs for better performance. Lastly, we reveal several
limitations of LLMCs for APR and make suggestions for future
research on LLMC-based APR.

Index Terms—Automated Program Repair, Large Language
Models of Code, Neural Machine Translation, Fine-Tuning

I. INTRODUCTION

Automated program repair (APR) techniques [1]–[6] aim to
automate the repair of software defects to reduce manual work
and guarantee the software quality. Among them, learning-
based APR techniques [5], [6] have attracted much attention
in recent years. In general, the Neural Machine Translation
(NMT) model is adopted for supervised training on bug-fix
pairs (BFPs) [7], which translates the buggy program to its
fixed version. Compared to traditional APR techniques [1]–

∥Work done while this author was an intern at Nanyang Technological
University, Singapore.

¶Corresponding authors.

[3], both the quantity and diversity of fixed bugs have been
improved through the use of learning-based tools [5], [8], [9].

Existing works [9]–[15] mainly employ traditional neu-
ral models (e.g., RNN, Transformer, etc.) in an encoder-
decoder framework and incorporate different kinds of domain
knowledge to automatically learn source code semantics for
repairing buggy programs. For example, DLFix [11] uses a
tree-based RNN model that learns the contexts of bug fixes,
resulting in an additional weighting input for learning the bug-
fixing code transformations. Similarly, Recoder [9] proposes
a syntax-guided edit decoder for APR with a provider/decider
architecture to predict syntactically correct edits. It uses place-
holders to generate patches with project-specific identifiers.
Nevertheless, the scale of model parameters along with the
training data is limited, which may fail to learn more strict
syntactic features and complex semantic dependencies of code
elements, thus may not generalize to unseen bug types [8],
[16].

In contrast, large language models of code (LLMCs) have
shown great advantages over traditional NMT-based models
of APR [17]–[19]. For example, Xia et al. [17] propose
AlphaRepair, a bug repair tool based on the LLMC, which
uses CodeBERT [20] as the foundation model and uses the
zero-shot learning paradigm to leverage the LLMC’s own code
understanding and generation capabilities for bug repair tasks.
Recently, researchers are becoming more aware of LLMCs and
have conducted studies to evaluate its impact on APR [16],
[21]–[23]. These studies indicate that directly applying pre-
trained LLMs can already substantially outperform all existing
APR tools. For instance, the InCoder model can fix 72% more
bugs than traditional learning-based APR techniques [22].

Despite all this, most existing studies focus on directly
using the LLMC with zero-shot or few-shot prompting, while
the benefit of fine-tuning LLMCs for APR is not yet fully
understood [6]. The missed opportunities are twofold: 1) Even
though Jiang et al. [22] explored the LLMC fine-tuning,
however, as stated, the applied fine-tuning is straightforward
and simple. It is still unclear regarding the impact of specific
design choices with fine-tuning, and what factors limit the
repair capability of LLMCs. 2) The scope of prior work
typically lies within limited bug types (e.g., single-hunk and

common bugs), the generality of APR tools has been largely
neglected (e.g., multi-hunk bugs and vulnerabilities).

To address the above issues, this paper comprehensively
explores the repair ability of LLMCs under the NMT fine-
tuning paradigm, aiming to provide more empirical guidance
for APR research and further bridge the gap between LLMCs
and APR. We investigate the repair capability of 5 LLMCs
in the NMT fine-tuning paradigm by following an encoder-
decoder generation procedure on bug-fix pairs (BFPs). We ap-
ply the fine-tuned LLMCs on 7 popular evaluation benchmarks
of different programming languages (PLs), and take into ac-
count software bugs, security vulnerabilities, and programming
errors. For simplicity, we collectively refer to them as defects.
Apart from single-hunk defects, we also evaluate the ability
of LLMCs for repairing multi-hunk defects. Specifically, we
focus on the following key aspects when using LLMCs for
APR.

Repair Effectiveness. We study the repair effectiveness of
LLMCs under the NMT fine-tuning paradigm in 6 repair tasks.
Our results show that LLMCs’ repair capability outperforms
previous APR tools. For bug repair, the best model fixes 34
and 25 bugs more than Jiang et al. [22] and Li et al. [24];
For vulnerability repair, the best repair accuracy is improved
by 20.04% compared to VulRepair [18]. For error repair,
our best repair accuracy outperforms TFix [25] by 11.32%.
Interestingly, we find that the smaller model (UniXcoder)
matched or even surpassed the larger model (CodeT5) in terms
of the repair capability. This indicates it does not necessarily
select LLMCs as large as possible for program repair.

Design Choices. We undertake an in-depth exploration of
different design choices in fine-tuning. We consider three
typical kinds of strategies, including code abstraction, code
representation, and checkpoint selection. The results imply
that: 1) The code abstraction strategy used in earlier work [7]
is unsuitable for LLMCs and may even reduce the repair ca-
pability of LLMCs. 2) Using the representation of buggy code
with fault locations and fix code without surrounding tokens
can yield better repair results. 3) Different repair scenarios may
require different evaluation metrics for checkpoint selection to
obtain the best fine-tuned model. And we find the ensemble
strategy that combines multiple selected checkpoints is a good
way to enhance the repair effectiveness.

Multi-hunk Defects. Unlike previous studies [16], [22],
for the first time, we thoroughly examine the performance
of NMT fine-tuned LLMCs for repairing multi-hunk defects.
To realize that, we adopt a code representation to mark the
fault locations and their fixes, which can learn to generate
fixed code for the multiple hunks correspondingly. Here, we
explore the multi-hunk bug/vulnerability repair. Overall, the
best LLMC fixed 9 more multi-hunk bugs than the dedicated
multi-hunk APR tool DEAR [24]. Surprisingly, LLMCs ex-
hibit similar performance between single-hunk (except single-
line) and multi-hunk bug/vulnerability repair. While for overly
complex vulnerabilities (e.g., more than 5 hunks), the repair
accuracy decreases dramatically with the increase of hunks.
Nevertheless, LLMCs can still fix a small portion (i.e., 5%)

of them even when the number of hunks exceeds 10. These
findings may encourage researchers to pay more attention to
complex defects for more practical use.

Future Directions. The limitations and challenges of fine-
tuning LLMCs for APR are also analyzed. We thoroughly
discussed two major factors that affect the repair capability of
LLMCs. On one hand, LLMCs usually fail to generate correct
patches due to lack of repair ingredients (e.g., method name of
one class), which may blame to the input/output length limit
of LLMCs. On the other hand, the generated candidate patches
are greatly restricted, since the hardware resources often can-
not meet the high computational demands of large models for
massive patches. Based on this, we propose some mitigation
measures and future directions (Section VII). For example, we
can adopt a sliding-encoder and decoder (SLED) [26] on the
pre-trained models to accept long and/or dependent methods.
Besides, sparse mechanism [27] and limited discrepancy beam
search [28] can also be applied when generating larger number
of candidate patches.

To sum up, this paper makes the following contributions:
• We systematically study the capability of 5 represen-

tative LLMCs (CodeBERT, GraphCodeBERT, PLBART,
CodeT5, and UniXcoder) in the fine-tuning paradigm for
APR across 3 typical repair scenarios (software bugs,
security vulnerabilities, and programming errors).

• We conduct an in-depth investigation of design choices
that may enhance the repair capability, and achieve signif-
icant improvements over vanilla fine-tuning using same
models.

• Our study reveals that LLMCs are capable of repairing
fairly complex multi-hunk defects to some extent, and
there is a good potential to tackle more complicated ones.

• We analyze several key factors that limit the repair
capability of LLMCs and propose feasible solutions to
mitigate them.

• Our artifacts including the code and experimental data
are made publicly available [29], which can serve as
benchmarks and baselines for the future work.

II. METHODOLOGY

A. Large Language Model of Code

LLMCs can be divided into three architectures: encoder-
only, decoder-only, and encoder-decoder [16], [22], [30], [31].
1) Encoder-only LLMCs are pre-trained based on BERT using
Mask Language Model (MLM), including CodeBERT [20],
GraphCodeBERT [32], ContraBERT [33], etc. 2) Decoder-
only LLMCs are represented by GPT, which has only the
decoder and pre-trained in an autoregressive manner. Typical
models are CodeGPT [34], GPT-C [35], Codex [36] etc. 3)
Encoder-Decoder LLMCs retain the infrastructure of Trans-
former with both encoder and decoder, such as CodeT5 [37]
and PLBART [38].

B. Overall Workflow

The workflow of fine-tuning LLMCs for APR follows the
basic learning-based APR technique [5], as shown in Figure 1.

1️⃣Data Pre-processing

STEP 2: Model Inference

STEP 1: Model Fine-tuning

Source code Bug-fix pairs

BUG FIX

BUG FIX

BUG FIX

……

……

BFPs Ext. Code Abs.

Bug code:

public TYPE_1 METHOD_1 (TYPE_2 VAR_1) {
if (VAR_1.METHOD_2 () >= INT_1) {

return TYPE_3.METHOD_3 (VAR_1); }
}

Fix code:

public TYPE_1 METHOD_1 (TYPE_2 VAR_1) {
if (VAR_1.METHOD_2 () >= INT_2) {

return TYPE_3.METHOD_4 (VAR_1); }
}

Bug code:

public TYPE_1 METHOD_1 (TYPE_2 VAR_1) {
if (VAR_1.METHOD_2 () >= INT_1) {

return TYPE_3.METHOD_3 (VAR_1); }
}

Fix code:

public TYPE_1 METHOD_1 (TYPE_2 VAR_1) {
if (VAR_1.METHOD_2 () >= INT_2) {

return TYPE_3.METHOD_4 (VAR_1); }
}

Bug code:

public TYPE_1 METHOD_1 (TYPE_2 VAR_1) {
if (VAR_1.METHOD_2 () >= INT_1) {

return TYPE_3.METHOD_3 (VAR_1); }
}

Fix code:

public TYPE_1 METHOD_1 (TYPE_2 VAR_1) {
if (VAR_1.METHOD_2 () >= INT_2) {

return TYPE_3.METHOD_4 (VAR_1); }
}

Code Rep.

Bug code:

public void METHOD() {
METHOD_1
<mark> bug_line; <mark>
METHOD_2

}

Fix code:

fix_line;

Bug code:

public void METHOD() {
METHOD_1
<mark> bug_line; <mark>
METHOD_2

}

Fix code:

fix_line;

Bug code:

public void METHOD() {
METHOD_1
<mark> bug_line; <mark>
METHOD_2

}

Fix code:

fix_line;

Bug code:

public void METHOD() {
METHOD_1
<mark> bug_line; <mark>
METHOD_2

}

Fix code:

fix_line;

Code Tok.

Source_tokens (Bug code):

['<s>’, 'public', '_boolean',
'_M', 'ETHOD', '_', '1', '_(',
'_java', '.', 'lang', '.',
'String', '_name', '_)', '_{',
'_TYPE', '_', '1', '_V’, ...

Target_tokens (Fix code):

['<s>’, 'ETHOD', '_', '1',
'_(', '_java', '.', 'lang',
'.', 'String', '_name’, ...

Source_tokens (Bug code):

['<s>’, 'public', '_boolean',
'_M', 'ETHOD', '_', '1', '_(',
'_java', '.', 'lang', '.',
'String', '_name', '_)', '_{',
'_TYPE', '_', '1', '_V’, ...

Target_tokens (Fix code):

['<s>’, 'ETHOD', '_', '1',
'_(', '_java', '.', 'lang',
'.', 'String', '_name’, ...

Source_tokens (Bug code):

['<s>’, 'public', '_boolean',
'_M', 'ETHOD', '_', '1', '_(',
'_java', '.', 'lang', '.',
'String', '_name', '_)', '_{',
'_TYPE', '_', '1', '_V’, ...

Target_tokens (Fix code):

['<s>’, 'ETHOD', '_', '1',
'_(', '_java', '.', 'lang',
'.', 'String', '_name’, ...

……

……

Multiple epochs

2️⃣Model Training and Tuning 3️⃣Model Evaluation

Evaluation metrics

BLEU

CODE_BLEU

LOSS

EXACT MATCH

PPL

Save best score model

Best BLEU model

Best LOSS model

Best PPL model

Best EM model

Best BLEU/LOSS/

PPL… model
Bug code

Patch candidates

4️⃣ Patch Generation 6️⃣ Patch Validation

Correct patch

5️⃣ Patch Post-processing

Patch Filtering Patch Ranking

①

②

③

④

Test cases Plausible patch

Patch Tes. Hand Che.

BFPs Ext.: BFPs Extraction

Code Abs.: Code Abstraction

Code Rep.: Code Representation

Code Tok.: Code Tokenization

Patch Tes.: Patch Testing

Hand Che.: Hand Check
Incorrect patch

1️⃣ Data Pre-processing

NMT model Checkpoint

Fig. 1: The workflow for APR based on NMT fine-tuning of LLMCs.

Generally, applying LLMCs to the APR workflow in the NMT
fine-tuning paradigm involves the following steps: 1) data pre-
processing, 2) model training and tuning, 3) model evaluation,
4) patch generation, 5) patch post-processing, and 6) patch
validation. Next, we describe the technical details of each step.

C. Data Pre-processing

Data pre-processing phase aims to convert the raw source
code into a format that LLMC can efficiently process. We
adopt the common practice of using BFPs [7] for learning to
transform the buggy code to fixed code at the method level.

1) Code Abstraction: Code abstraction processing was first
introduced to bug repair tasks by Tufano et al. [7]. This
technique alleviates the out-of-vocabulary (OOV) problem by
normalizing code elements and facilitates models to learn
generic fixing patterns [5], [6]. Subsequently, many following
works [10], [11], [24], [39], [40] adopt the similar strategy for
improvement. However, it is unclear whether code abstraction
could benefit LLMCs. Therefore, we explore the impact of
code abstraction [7] as the first design choice.

2) Code Representation: In learning-based APR tech-
niques, code representation is an essential factor for the repair
capability. Earlier works only focused on single-hunk bugs
and design the code representation specific to them. Recently,
VRepair [41] has extended the NMT model to multi-hunk fixes
by improving the code representation. To explore the impact of
different code representations on LLMCs’ repair capability, we
consider four code representations, abbreviated as CR1, CR2,
CR3, and CR4. As shown in Figure 2, all of them are based on
token sequence because existing LLMCs are generally limited
to such a representation. The details are illustrated below.

CR1: This is the original representation of NMT-based APR
work [7], which takes a whole buggy method as input and a
whole fixed method as output. CR1 aims to allow the model
to automatically fix defects without fault localization (FL).

CR2: CR2 is based on CR1, where the bug/fix hunk
are marked with special tokens (<BUGS>, <BUGE>, <FIXS>,
<FIXE>) so that the model learns the transition from bug code
to fixed code with the help of FL information. Hence, we

Model input:

int … { <BUGS> if (index < len) { <BUGE> return array [index] ; } else { <BUGS> return index ; <BUGE> } }

Model output:

<FIXS> index < len && index >= 0 <FIXE> else { return -1 <FIXE> ; } }

3 context tokens Tokens inserted after ‘index < len’ Tokens replaces ‘index’

Syntax for 3 types of change modification:

Type Syntax

Add <FIXS> context new

Delete <FIXS> context <FIXE> context

Replace <FIXS> context new <FIXE> context

Bug function:

int getVal(int *array, int len, int index) {
if (index < len) {

return array[index];
} else {

return index;
}

}

Fix function:

int getVal(int *array, int len, int index) {
if (index < len && index >= 0) {

return array[index];
} else {

return -1;
}

}

Bug line

Fix line

Mark tokens

Context before

Context after

(a) Bug-Fix Pair

Model input:

int … { if (index < len) { return array [index] ; } else { return index ; } }

Model output:

int … { if (index < len && index >= 0) { return array [index] ; } else { return -1 ; } }

(b) CR1

Model input:

int … { <BUGS> if (index < len) { <BUGE> return array [index] ; } else { <BUGS> return index ; <BUGE> } }

Model output:

int … { <FIXS> if (index < len && index >= 0) { <FIXE> return array [index] ; } else { <FIXS> return -1 ; <FIXE> } }

(c) CR2

Model input:

int … { <BUGS> if (index < len) { <BUGE> return array [index] ; } else { <BUGS> return index ; <BUGE> } }

Model output:

<FIXS> if (index < len && index >= 0) { <FIXE> <FIXS> return -1 ; <FIXE>

(d) CR3

(e) CR4

Fig. 2: Four code representation forms.

use it to analyze the impact of FL information on the repair
capability.

CR3: Inspired by SequenceR [10], we remove the context
of fixed code from CR2 to reduce the model output length
and speed up the training and prediction. This representation
is used to analyze the impact of simplifying the learning target
(i.e., the output) on the repair capability.

CR4: This is VRepair’s code representation for multi-
hunk fixes [41]. Unlike CR3, CR4 uses different mark ways
to distinguish between different repair behaviors (i.e., add,

delete, replace) and therefore has a finer marker granularity.
Through comparison, we can analyze the impact of fine-
grained representation on repair capability.

Note that the above four code representations support both
single-hunk and multi-hunk repair scenarios.

3) Code Tokenization: Following previous works [8], [18],
[25], [39], [42], we use a subword-level tokenizer namely
byte-pair encoding (BPE). It replaces frequently occurring
sequences of characters with a single symbol, resulting in
a more compact vocabulary. Therefore, it can effectively
alleviate the OOV problem in APR [5], [6] and is superior
to the word-level tokenizer [18].

D. Model Training and Tuning

This step aims to extend LLMCs into the NMT model
architecture for fine-tuning. For encoder-only LLMCs, we add
decoders to build the Seq2Seq architecture and fine-tune them
in a supervised manner. For encoder-decoder LLMCs, they are
the Seq2Seq architecture, so no changes to the structure are
needed. However, for decoder-only LLMCs, such generative
models need to concatenate the input and output for fine-
tuning, which weakens the ability of understanding buggy code
semantics due to the length limit. And a recent study [31]
indicates that decoder-only LLMCs can perform significantly
worse than the above two kinds of LLMCs. Therefore, we
focus on encoder-only and encoder-decoder LLMCs in this
work. After building the NMT model, multiple training itera-
tions are performed on the training dataset to enable the model
to learn the domain knowledge for defect repair.

E. Model Evaluation

During model training and tuning, the performance of
checkpoints after each training round need to be evaluated on
the validation set to find the best trained model. Researchers
have proposed various metrics for model evaluation [43], such
as PPL, BLEU, etc. However, it is still unclear how they can
affect the selection of the best repair model. Therefore, we
explore them to guide the selection of checkpoints in APR
tasks. Besides, we also keep the last round of checkpoints
that is irrelevant evaluation metrics, which we call the Last
model.

F. Patch Generation and Validation

In the patch generation phase, we use the beam search
strategy on multiple repair models from the model evaluation
phase to perform patch synthesis. We do not consider the
post-processing since it has already been well studied [16]
and is out of our scope. In the benchmark with test cases,
we followed the validation strategy from previous works [8]–
[12], [14], [17], [24], [42], [44], [45]. First, we run test cases to
filter out plausible patches. Then two authors manually check
the plausible patches to determine whether a plausible patch is
correct or incorrect patch. Finally, the result is correct patches
/ plausible patches (X/Y). In the benchmark without test cases,
we follow previous works [7], [18], [25], [39]–[41] and use
the exact match strategy to calculate the repair accuracy (Z%).

TABLE I: Details of the selected LLMCs.

Model Size Type Dataset
CodeBERT 125M Encoder CodeSearchNet

GraphCodeBERT 125M Encoder CodeSearchNet
PLBART 140M Encoder-Decoder StackOverflow and BigQuery
CodeT5 220M Encoder-Decoder CodeSearchNet and BigQuery

UniXcoder 125M Encoder-Decoder CodeSearchNet

III. EXPERIMENTAL SETUP

A. Research Questions

We explore the repair capability of LLMCs in different
scenarios by answering the following research questions in
software bug repair, security vulnerability repair, and program-
ming error repair, respectively:

RQ1: How do different design choices affect LLMCs’
repair capability? RQ1 investigates the impact of different
design choices on LLMCs’ repair capability, which can help
better compare LLMCs and provide guidance on fine-tuning
LLMCs. We will explore the impact of code abstraction (Sec-
tion II-C1), code representation (Section II-C2), and check-
point selection (Section II-E) on the results in the experiment.

RQ2: How well does the LLMC perform compared to
the state-of-the-art approaches? RQ2 aims to explore the
repair capability of LLMCs. We systematically evaluate their
performance under multiple defect types, programming lan-
guages, and defect complexities. Further, we compare LLMCs
to SOTA APR works to know whether LLMCs are superior.

RQ3: What are the factors that limit the effectiveness of
fine-tuning LLMCs? RQ3 aims to reveal the shortcomings of
LLMCs for APR tasks when fine-tuning and point out some
future directions for improvement.

B. Studied LLMCs

We follow the following criteria for selecting LLMCs. First,
we assume that the computing resource should be readily
available (e.g., a RTX 3090 GPU), which means that the model
size is at the million level. Also, the model parameters of all
LLMCs should be of similar size for a fairer comparison of the
repair capability. Second, the pre-trained model and its data
should be open-sourced, which allows for fine-tuning models
and analyzing the pre-training data (e.g., data leak).

Finally, we choose 5 models: CodeBERT [20], GraphCode-
BERT (GraphCode) [32], PLBART [38], CodeT5 [37], and
UniXcoder [46]. More details of models are shown in Table I.

C. Datasets and Baselines

As shown in Table II, we describe the datasets and baselines.
1) Software Bug Repair: In bug repair tasks, we evaluate

LLMCs on large-scale datasets and small-scale benchmarks.
Datasets. We use the BFP dataset including the small and

medium versions (BFP S and BFP M) provided by Tufanol et
al. [7] (Task ❶) and the SequenceR dataset (SeqRD) provided
by Chen et al. [10] (Task ❷) for training and testing, and take
their approaches as baselines.

Benchmarks. We use the standard Defects4J (D4J) [47] as
the test benchmark. For the single-hunk bug repair (Task ❸),
we use the Recoder dataset (RecD) provided by Jiang et

TABLE II: Datasets, baselines, and parameter settings for experimental setups. (I.O.: Max Input/Output Length; L.R.: Learning
Rate; T.E.: Training Epoch; B.S.: Beam Size; P.N.: Patch Number)

Repair Task Training Dataset Test Benchmark Language Defect Complexity Baseline Parameter Setting
Defect Task Dataset #Bugs #BFPs Dataset #Bugs #BFPs Single-hunk Multi-hunk I.O. L.R. T.E. B.S. P.N.

Bug

❶
BFP S - 52,515 BFP S - 5,835 Java ✓ ✓ Tufano et al. [7] 512 5e-5 30 5 1
BFP M - 58,909 BFP M - 6,546 Java ✓ ✓ Tufano et al. [7] 512 5e-5 30 5 1

❷ SeqRD - 35,551 SeqRD - 4,707 Java ✓ Chen et al. [10] 512 5e-5 30 50 50

❸
RecD - 143,666 D4J V1.2 383 554 Java ✓ Jiang et al. [22] 512 5e-5 30 100 10
RecD - 143,666 D4J V2.0 412 719 Java ✓ Jiang et al. [22] 512 5e-5 30 100 10

❹ CPMD 44,154 80,501 D4J V1.2 383 554 Java ✓ ✓ Li et al. [24] 512 1e-4 30 100 100
Vul. ❺ VulRD - 6,776 VulRD - 1,706 C/C++ ✓ ✓ Fu et al. [18] 512 2e-5 75 50 50

Error ❻ TFixD - 94,300 TFixD - 10,504 JavaScript ✓ Berabi et al. [25] 512 2e-5 30 5 1

al. [22] for model training, and the testing is on Defects4J
V1.2 and 2.0. For the multi-hunk bug repair (Task ❹), we use
the CPatMiner dataset (CPMD) provided by Li et al. [24]
for training, and test them on the Defects4J V1.2. As Li
et al. only provided repair results on Defects4J V1.2, we
keep consistent with them to avoid bias on V2.0. Note that
we extracted 220,125 BFPs from the CPatMiner dataset and
ended up with 80,501 BFPs after removing duplicate ones.
Besides, Defects4J V1.2 contained 395 bugs, and Defects4J
V2.0 introduced additional 444 bugs. Since we focus on
method-level bug fixing, we use 383 and 412 bugs of them.

2) Security Vulnerability Repair: We use VulRepair by
Fu et al. [18] as the baseline and their VulRepair dataset
(VulRD) for model training and testing (Task ❺), which
include Big-Vul [48] and CVEfixes [49].

3) Programming Error Repair: We use TFix by Berabi
et al. [25] as the baseline and their publicly available TFix
dataset (TFixD) for training and testing (Task ❻).

D. Implementation

The parameter settings for each repair task are listed in
Table II. Besides, we use perfect fault localization (PFL) and
set a maximum run time limit of 5 hours [9], [24], [50]. All the
pre-trained models are downloaded from Hugging Face. We
conduct all the experiments on a 12-Core workstation with
Intel(R) Xeon(R) Bronze 3204 CPU, 46 GB RAM and 24G
RTX3090 GPU, running Ubuntu 18.04.6 LTS.

IV. SOFTWARE BUG REPAIR

A. Empirical Results

Table III shows the repair results of LLMCs in different
repair tasks: 1) In Task ❶, we first study the impact of
different design choices for bug repair on the BFP dataset [7]
to provide guidance for subsequent experiments. These choices
include different code abstraction strategies (abs/raw), code
representation forms (CR1/CR2/CR3), and model evaluation
metrics for selecting checkpoints (PPL/BLEU/Last). 2) In
Task ❷, we follow the insights gained from Task ❶ and
use the best combination of the code representation (CR3) +
without code abstraction (raw) to perform the experiments on
the SequenceR dataset [10]. 3) In Task ❸, we evaluate LLMCs
for single-hunk bugs on Defects4J V1.2 and V2.0 [47]. 4) In
Task ❹, we evaluate the multi-hunk bugs on Defects4J V1.2.

0% 4% 8% 12% 16% 20% 24% 28%

CodeBERT

GraphCodeBERT

PLBART

CodeT5

UniXcoder

CR1_raw CR1_abs

(a) The impact of Code Abs. on the BFP_small dataset

0% 2% 4% 6% 8% 10% 12% 14% 16% 18%

CodeBERT

GraphCodeBERT

PLBART

CodeT5

UniXcoder

CR1_raw CR1_abs

(b) The impact of Code Abs. on the BFP_medium dataset

Fig. 3: The impact of Code Abs. on the BFP dataset.

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

CodeBERT

GraphCodeBERT

PLBART

CodeT5

UniXcoder

CR3_raw CR2_raw CR1_raw

0% 5% 10% 15% 20% 25% 30% 35% 40% 45%

CodeBERT

GraphCodeBERT

PLBART

CodeT5

UniXcoder

CR3_raw CR2_raw CR1_raw

(a) The impact of Code Rep. on the BFP_small dataset (b) The impact of Code Rep. on the BFP_medium dataset

Fig. 4: The impact of Code Rep. on the BFP dataset.

B. Research Questions

1) RQ1: How do different design choices affect LLMCs’
repair capability?

Code Abstraction. We first analyze the impact of code
abstraction. From Table III (Task ❶), we observe that using
code abstraction (CR1 abs) and without code abstraction
(CR1 raw) have a more or less impact on the repair results.
To present a more intuitive picture of the impact of code
abstraction, we extract the Last model repair results for each
LLMC for comparison (Last model is irrelevant to evaluation
metrics). As shown in Figure 3, for most LLMCs, the potential
impact of code abstraction on the repair capability may be
limited or negligible. For example, CodeT5 and UniXcoder
achieved the best repair results using raw code input, while
CodeBERT and GraphCodeBERT have close results on abs
and raw. This suggests that raw code is already adequate, and
it is unnecessary to use code abstraction for LLMCs.

There are two main reasons for the phenomenon. First, since
LLMCs are usually pre-trained on raw source code, they are
better suited to the same unprocessed raw data for downstream
tasks. Second, as Chen et al. argue, code abstraction may lose
some semantic information (e.g., special function and variable
names) [10], which makes it difficult to learn fix patterns.

Finding 1: Code abstraction does not significantly improve the
repair capability of most LLMCs. Using the data format without
code abstraction processing (i.e., raw source code) is more suitable
for fine-tuning LLMCs.

Code Representation. In order to investigate the impact

TABLE III: Repair results of LLMCs in different repair tasks. (X/Y: correct patches / plausible patches; Z%: repair accuracy)
CodeBERT GraphCodeBERT PLBART CodeT5 UniXcoderTask Benckmark Code Rep.+ Abs. PPL BLEU Last PPL BLEU Last PPL BLEU Last PPL BLEU Last PPL BLEU Last

CR1 abs 12.94% 16.90% 16.90% 13.32% 17.55% 17.62% 17.96% 8.86% 19.40% 20.15% 21.80% 21.37% 19.47% 18.89% 19.20%
CR1 raw 12.17% 16.30% 17.48% 14.81% 17.26% 17.46% 14.41% 17.86% 17.93% 19.69% 22.45% 25.18% 18.44% 23.79% 23.79%
CR2 raw 34.28% 34.28% 34.28% 31.11% 33.44% 33.52% 31.65% 34.14% 34.52% 43.27% 47.82% 47.80% 36.71% 41.70% 42.33%❶ BFP S

CR3 raw 34.82% 35.25% 34.82% 36.49% 39.32% 39.32% 33.13% 34.57% 36.00% 42.71% 47.66% 47.34% 42.67% 45.02% 45.02%
CodeBERT GraphCodeBERT PLBART CodeT5 UniXcoderTask Benckmark Code Rep.+ Abs. PPL BLEU Last PPL BLEU Last PPL BLEU Last PPL BLEU Last PPL BLEU Last

CR1 abs 4.72% 3.16% 9.73% 3.96% 3.96% 10.36% 13.17% 0.31% 13.17% 8.27% 13.95% 13.92% 5.39% 2.55% 8.08%
CR1 raw 4.22% 9.41% 9.41% 5.27% 10.45% 10.45% 4.58% 0.69% 10.13% 8.72% 16.03% 16.03% 6.59% 11.38% 11.64%
CR2 raw 26.11% 31.75% 31.61% 27.56% 30.88% 30.96% 23.47% 27.96% 27.96% 35.77% 41.88% 41.88% 32.21% 36.85% 36.85%❶ BFP M

CR3 raw 28.40% 33.48% 33.48% 29.01% 33.35% 33.43% 27.04% 30.39% 30.74% 36.24% 42.12% 42.12% 36.29% 39.53% 39.65%
CodeBERT GraphCodeBERT PLBART CodeT5 UniXcoderTask Benckmark Code Rep.+ Abs. PPL BLEU Last PPL BLEU Last PPL BLEU Last PPL BLEU Last PPL BLEU Last

❷ SeqRD CR3 raw 19.06% 14.40% 14.49% 19.35% 14.74% 14.53% 17.87% 13.13% 12.96% 36.22% 26.20% 26.03% 33.91% 22.33% 22.24%
CodeBERT GraphCodeBERT PLBART CodeT5 UniXcoderTask Benckmark Code Rep.+ Abs. PPL BLEU Last PPL BLEU Last PPL BLEU Last PPL BLEU Last PPL BLEU Last

D4J V1.2 CR3 raw 21/37 25/35 23/31 24/39 26/35 26/37 12/24 16/23 16/23 41/53 30/43 30/43 46/63 36/46 38/45
D4J V2.0 CR3 raw 22/38 12/26 23/26 23/43 22/38 22/37 23/39 15/27 15/27 30/39 16/26 16/26 37/55 20/33 22/35
D4J V1.2 CR3 raw 7.76% 6.68% 6.14% 8.84% 6.86% 7.04% 4.51% 4.69% 4.69% 11.01% 8.84% 8.84% 11.73% 8.48% 9.21%❸

D4J V2.0 CR3 raw 5.84% 2.78% 3.20% 5.70% 4.03% 4.03% 6.12% 4.59% 4.59% 8.34% 6.12% 6.12% 8.84% 5.70% 5.84%
CodeBERT GraphCodeBERT PLBART CodeT5 UniXcoderTask Benckmark Code Rep.+ Abs. PPL BLEU Last PPL BLEU Last PPL BLEU Last PPL BLEU Last PPL BLEU Last

D4J V1.2 CR3 raw 40/54 34/48 31/46 41/61 39/53 39/53 32/52 25/39 25/41 69/95 53/77 53/77 66/102 52/76 54/82
❹ D4J V1.2 CR3 raw 11.19% 10.47% 10.83% 10.11% 8.84% 8.84% 10.29% 7.94% 7.76% 17.69% 12.64% 12.64% 18.41% 13.36% 14.08%

CodeBERT GraphCodeBERT PLBART CodeT5 UniXcoderTask Benckmark Code Rep.+ Abs. PPL BLEU Last PPL BLEU Last PPL BLEU Last PPL BLEU Last PPL BLEU Last
CR3 raw 43.96% 51.58% 51.58% 43.61% 53.28% 53.22% 47.30% 59.85% 60.08% 52.93% 62.78% 62.78% 50.64% 62.08% 62.19%

❺ VulRD CR4 raw 31.07% 49.00% 49.24% 25.91% 41.85% 41.97% 46.19% 53.58% 53.93% 35.87% 55.86% 55.92% 40.62% 55.28% 55.63%
CodeBERT GraphCodeBERT PLBART CodeT5 UniXcoderTask Benckmark Code Rep.+ Abs. PPL BLEU Last PPL BLEU Last PPL BLEU Last PPL BLEU Last PPL BLEU Last

❻ TFixD CR3 raw 48.28% 52.39% 52.83% 48.53% 52.33% 52.33% 44.78% 48.23% 48.23% 50.44% 54.93% 55.31% 48.25% 54.33% 54.31%

of different code representations, we again compare LLMCs
with the Last model according to the results from Table III
(Task ❶). We present the impact of the different CRs on the
repair results in Figure 4. As shown in Figure 4, the use
of CR2 with fault location and repair location information
outperforms the repair results of CR1. In addition, we observe
that CR3, a representation that removes the repair code context
information, has a slightly better repair effect than CR2.
Combining these results, we conclude that CR3 is a more
suitable code representation for the repair task.

We now analyze why CR3 can work more effectively
on LLMCs. First, using special tokens to mark fault/repair
locations enables the model to focus on code repair behaviors
for targeted learning. Second, LLMCs suffer from the long
sequence problem [18]. As the length of the input/output
grows, the repair accuracy of LLMCs decreases. Removing
irrelevant context from the output sequence is equivalent to
reducing the output length, so the model’s repair capability
may be improved.

Finding 2: The fine-tuning of LLMCs for APR can be improved by
delicate code representations. More accurate fault location, precise
repair location information, and removing the contextual code of
the fixes are all beneficial for improvement.

Checkpoint Selection. We track the impact of different
model evaluation metrics for checkpoint selection on the re-
sults under the best input/output format CR3 raw. In Table III
(Task ❶), on the BFP dataset, the best BLEU model and the
Last model tend to achieve higher repair accuracy than the
best PPL model. However, the contrary result is obtained on
the SequenceR dataset and Defects4J. In Table III (Task ❷-❹),
the best PPL model achieves the best repair accuracy.

This motivates us to explore further. First, we noticed that in
the repair scenario with BLEU as the best metric (Task ❶), the
train/val/test datasets were obtained from a random split on the
BFP dataset. Thus the train/val/test datasets hold similar data

TABLE IV: Best repair results for LLMCs on Task ❶

Benchmark CodeBERT GraphCode PLBART CodeT5 UniXcoder Tufano et al.
BFP S 36.59% 44.44% 43.62% 54.14% 51.48% 10.32%
BFP M 37.74% 38.04% 36.59% 47.49% 46.26% 3.61%

TABLE V: Best repair results for LLMCs on Task ❷

CodeBERT GraphCode PLBART CodeT5 UniXcoder SequenceR
21.92% 22.46% 20.31% 38.11% 36.63% 20.18%

characteristics. Second, we found that in the repair scenarios
where PPL was the best metric (Task ❷-❹), the train/val/test
datasets were not split from the same dataset. For example, on
Task ❷, the training data of the SequenceR dataset consists
of CodRep 1/2/3/5 [51] and the BFP dataset [7], whereas the
test data comes from CodRep 4 [51]. Similarly, on Task ❸
and Task ❹, the training data (Recoder dataset and CPatMiner
dataset) do not contain the software projects from Defects4J.
We can conclude that BLEU aligns better with training data,
while PPL shows better generalization. When data character-
istics are alike, BLEU is better; otherwise, PPL is preferred.
However, it is hard to know the difference between the training
and testing samples in practice. Therefore, we follow the
practice of previous works [12], [52] to use the ensemble
strategy by combining multiple checkpoints (PPL/BLEU/Last)
to enhance the repair capability.

Finding 3: Different repair scenarios may have different best
evaluation metrics for checkpoint selection. In practice, using
ensemble learning is an appropriate strategy.

2) RQ2: How well does the LLMC perform compared to
the state-of-the-art approaches? Based on findings obtained
from RQ1, we use the CR3 raw and the ensemble strategy
to obtain the best performance of LLMCs and compare them
with baselines.

Task ❶. As shown in Table IV, on the BFP dataset,
LLMCs improve over the baseline Tufano et al. [7] as follows:
1) BFP S: CodeT5 (+43.82%) > UniXcoder (+41.16%) >

TABLE VI: Best repair results for LLMCs on Task ❸

Benchmark
Our Work Baseline (Jiang et al. [22])

CodeBERT GraphCode PLBART CodeT5 UniXcoder PLBART CodeT5 CodeGen InCoder DL-based APR Tool
base base base base base base base 350M 2B 6B 1B 6B CURE Reward Recoder KNOD

D4J V1.2 33/47 34/47 16/31 49/62 57/71 25/- 30/- 23/- 32/- 38/- 27/- 41/- 6/- 20/- 24/- 20/-
D4J V2.0 25/44 28/48 24/41 33/45 46/67 13/- 17/- 20/- 23/- 23/- 24/- 28/- 6/- 8/- 11/- 13/-

TABLE VII: Best repair results for LLMCs on Task ❹

Bug Type Our Work Baseline (Li et al. [24])
CodeBERT GraphCode PLBART CodeT5 UniXcoder DEAR CURE CoCoNut DLFix

1. One-Hunk of One-Stmt 21/27 24/31 16/25 42/54 42/52 33/- 38/- 37/- 35/-
2. One-Hunk of Multi-Stmts 8/10 7/11 7/9 11/14 11/16 4/- 3/- 3/- 1/-
3. Multi-Hunks of One-Stmt 10/11 9/14 9/13 12/16 11/18 13/- 6/- 3/- 4/-

4. Multi-Hunks of Multi-Stmts 6/6 4/5 4/4 5/5 6/8 1/- 0/- 0/- 0/-
5. Multi-Hunks of Mix-Stmts 7/8 3/6 3/7 7/17 8/22 2/- 1/- 1/- 0/-

Total 52/62 47/67 39/58 77/106 78/117 53/- 48/- 44/- 40/-

GraphCodeBERT (+34.12%) > PLBART (+33.30%) > Code-
BERT (+26.27%). 2) BFP M: CodeT5 (+43.88%) > UniX-
coder (+42.65%) > GraphCodeBERT (+34.43%) > CodeBERT
(+34.13%) > PLBART (+32.98%).

Task ❷. On the SequenceR dataset, all LLMCs’ results
outperform SequenceR [10] (Table V): CodeT5 (+17.93%)
> UniXcoder (+16.45%) > GraphCodeBERT (+2.28%) >
CodeBERT (+1.74%) > PLBART (+0.13%).

Task ❸. As shown in Table VI, our best results on De-
fects4J outperform previous APR tools [8], [9], [14], [50]
and the recent study [22]. On Defects4J V1.2 and V2.0,
our CodeT5-base and PLBART-base fixed 35 and 2 more
bugs than Jiang et al. [22] when using the same model fine-
tuning. Notably, our small-scale LLMCs UniXcoder/CodeT5
outperform large-scale LLMC InCoder-6B used by Jiang et
al. Compared to their best model InCoder-6B, our results are
as follows: 1) Defects4J V1.2: UniXcoder (+16) > CodeT5
(+8) > GraphCodeBERT (-7) > CodeBERT (-8) > PLBART
(-25). 2) Defects4J V2.0: UniXcoder (+18) > CodeT5 (+5) >
GraphCodeBERT (+0) > CodeBERT (-3) > PLBART (-4).

Task ❹. As shown in Table VII, our best repair results
on Defects4J V1.2 outperform existing works [8], [11], [12],
[24]. LLMCs improve over the best multi-hunk APR tool
DEAR [24] as follows: UniXcoder (+25) > CodeT5 (+24) >
CodeBERT (-1) > GraphCodeBERT (-6) > PLBART (-14).

According to the results from Task ❶-❹, we find that using
the LLMCs UniXcoder and CodeT5 has surpassed previous
works on bug repair tasks. This demonstrates that fine-tuning
LLMC has great potential for APR research. Notably, the
smaller UniXcoder-base (125M) achieved similar or even
better results than CodeT5-base (220M).

Finding 4: The repair capability of LLMCs show great potential
for bug repair tasks. In addition, small-scale models may achieve
similar or even better results than larger models.

Multi-Hunk. We also pay close attention to multi-hunk
bug fix, since little research has been done on the repair of
complex bugs. As mentioned earlier, we use CR3 to extend
the NMT workflow to multi-hunk repair scenarios. The results
are provided in Table VII. Obviously, compared to single-
line bugs (Type 1), single-hunk (Type 2) and multi-hunk bugs
(Type 3-5) are far more difficult to repair. This is because such
bugs entail intricate dependencies from both inner and outer
of one buggy method. Nonetheless, our work achieves a great

improvement over existing approaches on fixing such complex
bugs. In particular, UniXcoder and CodeT5 outperform the
advanced multi-hunk APR tool DEAR and fixed 9 and 8
more multi-hunk bugs. Furthermore, to our surprise, there is
little gap between the number of fixed single-hunk bugs and
the number of multi-hunk bugs. We hope such results can
encourage researchers to explore more advanced approaches
for repairing complex bugs, as they are more common in real-
world projects.

Finding 5: Fine-tuning LLMCs to fix multi-hunk bugs is also
promising, though it is more difficult compared with single-line
bug repair.

Data Leakage. Prior work AlphaRepair [17] uncovered the
data leak issue when using LLMCs for APR, that is, the over-
lap between the pre-training data (CSN, i.e.,CodeSearchNet)
and the test benchmark (D4J, i.e.,Defects4J). To reveal its
impact, we follow AlphaRepair to analyze the LLMCs’ repair
results with respect to the data leak. We searched for the
exact match and identified 48 overlaps between D4J IDs and
CSN. Then we checked if the patches generated by LLMCs
were identical to those present in D4J. In Task ❸, among
the 48 patches, only Lang 43, Math 22, and Mockito 5 were
identified, and a similar pattern was observed in Task ❹. The
results imply that fine-tuned LLMCs are minimally affected
by data leakage. However, this also means that LLMCs may
tend to lose certain pre-trained knowledge during the fine-
tuning process, highlighting the presence of the catastrophic
forgetting problem [53], [54] during this phase.

Finding 6: The LLMC is minimally affected by data leakage
after sufficient fine-tuning. However, this exposes the catastrophic
forgetting problem of LLMCs under the fine-tuning paradigm.

3) RQ3: What are the factors that limit the effectiveness
of fine-tuning LLMCs? We found two main factors that may
limit the repair capability of LLMCs in our experiment.

Lack of Repair Ingredients. One of the factors is the
method-level BFPs and the limited input/output length. In
particular, when using method-level BFPs, it is difficult for the
model to synthesize correct patches based on the incomplete
context if repair ingredients (e.g., method names, variable
names, etc.) are outside of that method. Besides, if a method
exceeds the maximum input/output length, it is difficult to
provide a complete method for the model. This may result in

TABLE VIII: Results of different design choices on Task ❺

Model + Design Choices Repair Accuracy
CodeT5 + CR4 raw + LOSS (VulRepair) 44.67%
CodeT5 + CR4 raw + PPL 35.87% (-8.8%)
CodeT5 + CR4 raw + BLEU 55.86% (+11.19%)
CodeT5 + CR4 raw + Last 55.92% (+11.25%)
CodeT5 + CR4 raw + Ensemble Learning 57.33% (+12.66%)
CodeT5 + CR3 raw + LOSS 52.35% (+7.68%)
CodeT5 + CR3 raw + PPL 52.93% (+8.26%)
CodeT5 + CR3 raw + BLEU 62.78% (+18.11%)
CodeT5 + CR3 raw + Last 62.78% (+18.11%)
CodeT5 + CR3 raw + Ensemble Learning 64.71% (+20.04%)

a lack of necessary contextual information to guide the repair.

Finding 7: Method-level BFPs and the limited model input/output
lengths may miss the necessary contextual information to guide the
repair, thus limiting the repair capability of LLMCs.

Computing Resource and Model Size. The lack of com-
puting resources and the overly-large model size can hinder
LLMCs from generating more candidate patches. For example,
when we perform patch synthesis on Defects4J, we can only
go up to a max beam size of 200 and generate 200 patches for
each bug. Unlike traditional DL models [8], [12], [15], [50],
it is non-trivial to use a larger beam size and produce a larger
patch space. On the other hand, previous studies [7], [18] have
confirmed that the size of patch space positively impacts the
overall performance of DL models for APR. Therefore, such
a limitation makes it difficult for further improvement.

Finding 8: The limited computing resource along with the large
model size of LLMCs is a non-negligible factor that should be
carefully considered when improving the fine-tuning of LLMCs.

V. SECURITY VULNERABILITY REPAIR

A. Empirical Results

In Task ❺, we explore the vulnerability repair capability of
LLMCs on the VulRepair dataset. Table III shows the repair
results using our previously obtained best representation (CR3)
and VRepair’s representation (CR4) [41].

B. Research Questions

1) RQ1: How do different design choices affect LLMCs’
repair capability? We conduct ablation study on CodeT5 used
in VulRepair to explore the impact of different design choices.

Code Representation. As shown in Table VIII, the repair
results using CR3 are all better than those using CR4. Obvi-
ously, CR3 is a more useful representation. This result again
supports our Finding 2. This is because the two represen-
tations differ in the complexity of marking repair behaviors.
As shown in Figure 2, in CR3, all repair behaviors are seen
as replace operations. In CR4, three distinct marks are used
to represent add, delete, and replace actions, providing finer
token-level fix locations. However, the complexity of this
strategy might impede the model in understanding the different
repair actions and accurately implementing fixes at precise
locations. As a result, the model’s repair capability could be
compromised. In fact, all repair actions can be simplified to
replacement operations (i.e., the fix replaces the bug location).

TABLE IX: Best repair results for LLMCs on Task ❺

Our Work Baseline (Fu et al. [18])
CodeBERT GraphCode. PLBART CodeT5 UniXcoder VulRepair VRepair

52.17% 54.16% 60.90% 64.71% 63.77% 44.67% 23.00%

TABLE X: Results of UniXcoder(-nine) on Task ❺

Details UniXcoder UniXcoder-nine
CR3 raw + PPL 50.64% 43.90%
CR3 raw + BLEU 62.08% 62.37%
CR3 raw + Last 62.19% 62.66%
CR3 raw + ALL 63.77% 64.71%

Although CR3 uses a coarse-grained markup approach, it
simplifies the repair operation, thereby enhancing the model’s
repair capability.

Finding 9: Using finer-grained code representations is not con-
ducive to fully exploiting the repair capability of LLMCs, and CR3
remains the best representation on vulnerability repair.

Checkpoint Selection. As shown in Table VIII, the repair
results using BLEU are better than those using PPL and LOSS.
We infer this due to the random partitioning of the VulRepair
dataset into train/val/test sets from Big-Vul and CVEfixes.
Based on previous findings (Section IV-B1), BLEU is better
suited for this scenario. After combining multiple models,
we achieve up to 20.04% improvement in repair accuracy
using CodeT5. This demonstrates that the ensemble learning
strategy effectively improves the overall repair capability.
These outcomes reinforce Finding 3 in Section IV-B1.

2) RQ2: How well does the LLMC perform compared
to the state-of-the-art approaches? Based on the findings
obtained from RQ1, we use the data form CR3 raw and the
ensemble learning strategy and compare them with baselines.

Performance. As shown in Table IX, on the VulRepair
dataset, all LLMCs outperform VulRepair [18] and VRe-
pair [41]. In particular, LLMCs improve over the best base-
line VulRepair [18] as follows: CodeT5 (+20.04%) > UniX-
coder (+19.10%) > PLBART (+16.23%) > GraphCodeBERT
(+9.49%) > CodeBERT (+7.50%).

According to the results, we conclude that LLMCs can dra-
matically surpass the baselines [18], [41] on the vulnerability
repair task. This also indicates that there is still a vast research
space to improve vulnerability repair based on LLMCs.

Generalization. Importantly, several LLMCs (e.g., Code-
BERT, GraphCodeBERT, PLBART, UniXcoder) not originally
pre-trained in C/C++ language still demonstrate effective
performance. The absence of data leak issues confirms their
impressive generalization abilities. To further explore LLMCs’
transferability, we compare UniXCoder with its C/C++ pre-
trained variant UniXcoder-nine [55]. As shown in Table X,
UniXcoder-nine has a slight improvement over UniXcoder.
Nevertheless, the improvement is quite limited, suggesting that
LLMC already has strong generalization capability.

Multi-Hunk. We also study the repair capability of LLMCs
for different vulnerability hunks. As shown in Table XI,
LLMCs have the highest repair accuracy in single-hunk fixes.
In the multi-hunk fixing scenario, when the number of hunks
is not big (i.e., <5), the accuracy is not significantly behind

TABLE XI: Performance of LLMCs with vulnerability hunks.
Vul. #Hunks CodeBERT GraphCode PLBART CodeT5 UniXcoder

1 60% 63% 71% 75% 74%
2 53% 55% 60% 64% 63%
3 56% 57% 62% 66% 65%
4 40% 42% 51% 54% 58%
5 25% 27% 31% 31% 33%
6 24% 24% 24% 27% 24%
7 17% 17% 22% 22% 17%
8 13% 13% 13% 13% 13%
9 7% 7% 7% 7% 7%

10+ 5% 5% 5% 5% 5%

TABLE XII: Best repair results for LLMCs on Task ❻

Our Work Baseline (Berabi et al. [25])
CodeBERT GraphCode PLBART CodeT5 UniXcoder TFix CoCoNuT SequenceR

57.42% 56.45% 53.28% 60.62% 60.10% 49.30% 11.70% 17.90%

that of the single-hunk fixes. However, as the vulnerable hunks
increase, the repair accuracy of LLMCs drops sharply. To sum
up, although we can obtain a fairly good results for repairing
complex vulnerabilities, there is still a long way to go for
overly complex ones.

Finding 10: The fine-tuned LLMCs show great potential for
vulnerability repair and have a strong generalization capability.
They can also deal with multi-hunk vulnerabilities to some extent
unless the hunks are too many.

3) RQ3: What are the factors that limit the effectiveness
of fine-tuning LLMCs? Here we analyze the limitations
that LLMC exhibits when dealing with different vulnerability
types, input/output lengths, and vulnerability hunk numbers in
the VulRepair dataset.

Long-tail Problem. Table XIII present the results of
LLMC’s repair capability on the top 10 CWE types [56]. When
there is less training samples for one type of vulnerabilities, the
performance is worse. This is the classic long-tail problem that
challenges the effective training of a model on a large dataset
with imbalanced class distribution. For example, the training
set contains 97 CWE types, yet 55 types have no more than
10 training samples. In summary, the long-tail issue [39], [41]
remains a major challenge that hinders vulnerability repair.

Finding 11: Addressing small sample sizes and class imbalance
constitutes a primary challenge in vulnerability repair.

Long Sequence. We examine how the repair capability of
LLMCs is influenced by the input and output lengths. From
Table XIV, we observe that LLMCs suffer from the long
sequence problem, i.e., as the length of input/output sequences
increases, the repair capability of the model decreases. Even
many studies [7], [10], [18] have highlighted the long sequence
problem, alleviating this problem remains the way forward.

Finding 12: The repair capability of LLMCs suffers from the long
sequence problem in general.

VI. PROGRAMMING ERROR REPAIR

A. Empirical Results

In Task ❻, we explore the single-hunk error repair capability
of LLMCs on the TFix dataset (see Table III).

B. Research Questions

1) RQ1: How do different design choices affect LLMCs’
repair capability? Section IV and V have concluded that

// fix no-undef Undefined variable.
NL.triggerMapMoveEnd();

- NL.respondLast200(NL.json.MapWmsLayers.records.regular);
+ NL.respondLast200(fx.regular);
var layers = NL.vw.MAP.getWmsLayers();

Fig. 5: An error-fix example of no-undef.

using the CR3 raw and the ensemble strategy is the best
technical detail setup. Thus we will not explore RQ1 further.

2) RQ2: How well does the LLMC perform compared
to the state-of-the-art approaches? We use the CR3 raw and
the ensemble strategy to obtain best repair results of LLMCs
on test benchmark and compare them with baselines.

Task ❻. As shown in Table XII, on the TFix dataset,
LLMCs improve over the best baseline TFix [25] (T5-large) as
follows: CodeT5 (+11.32%) > UniXcoder (+10.80%) > Code-
BERT (+8.12%) > GraphCodeBERT (+7.15%) > PLBART
(+3.98%).

Overall, LLMCs have outperformed baseline approaches,
underscoring the significant potential of LLMCs in error repair.

Finding 13: Fine-tuned LLMCs show significantly stronger repair
capabilities compared to existing learning-based approaches.

3) RQ3: What are the factors that limit the effectiveness
of fine-tuning LLMCs? Here we analyze the limitations that
LLMC exhibits when dealing with different error types (see
Table XV). We highlight the results of different error types
where the accuracy is less than 50%.

Taking the no-undef error type as an example (see Figure 5),
we observe that fixing this error requires sufficient context to
substitute the undefined variable with the defined one. How-
ever, the TFix dataset solely furnishes context from the line
preceding and following the error location. As a result, it might
lack the essential repair components, potentially resulting in
an incorrect patch. This issue re-emphasizes Finding 7.

VII. DISCUSSION

This section discusses the limitations identified in our study
that affect the repair capability of LLMCs and seeks directions
for improvement.

1) Loss of Pre-trained Knowledge: As described in Find-
ing 6, after fine-tuning, LLMCs may lose some of the knowl-
edge learned from the pre-training phase compared to zero-
shot learning [17]. Furthermore, we noticed that AlphaRe-
pair [17] converts the repair task into a cloze task (MLM)
rather than a translation task (NMT). The cloze task could
better fit the model’s pre-training task (i.e., MLM). That is, it
predicts the token at the mask location based on the contextual
tokens. However, it is unclear how the repair ability differs
using the two paradigms (NMT and MLM). Therefore, we
suggest exploring the following two directions.

D1: Mitigation of catastrophic forgetting. There have been various
mitigation measures towards this problem [54], and it is meaningful
to introduce these techniques into APR.
D2: NMT vs. MLM. Fine-tuning the LLMC through both NMT
and MLM tasks allows us to explore the differences in repair
capabilities between the two learning paradigms.

TABLE XIII: The % perfect predictions of LLMCs for the top-10 most dangerous CWEs. (T.S.: Train #Samples)
Vulnerability Type CodeBERT GraphCodeBERT PLBART CodeT5 UniXcoder

Top CWE T.S. %PP Proportion %PP Proportion %PP Proportion %PP Proportion %PP Proportion
1 CWE-787 188 42% 26/62 42% 26/62 45% 28/62 52% 32/62 52% 31/62
2 CWE-79 7 100% 1/1 100% 1/1 100% 1/1 100% 1/1 100% 1/1
3 CWE-89 5 75% 3/4 75% 3/4 100% 4/4 100% 4/4 100% 4/4
4 CWE-20 455 62% 82/133 62% 83/133 69% 92/133 74% 98/133 74% 96/133
5 CWE-125 455 49% 81/165 51% 84/165 54% 89/165 57% 94/165 57% 93/165
6 CWE-78 21 0% 0/4 0% 0/4 0% 0/4 0% 0/4 0% 0/4
7 CWE-416 174 58% 37/64 58% 37/64 64% 41/64 67% 43/64 67% 43/64
8 CWE-22 23 50% 3/6 50% 3/6 50% 3/6 50% 3/6 50% 3/6
9 CWE-352 8 0% 0/1 0% 0/1 0% 0/1 0% 0/1 0% 0/1
10 CWE-434 1 0% 0/0 0% 0/0 0% 0/0 0% 0/0 0% 0/0

Total 53% 233/440 54% 237/440 59% 258/440 63% 275/440 62% 271/440

TABLE XIV: Impact of input/output lengths on LLMCs for
vulnerability repair.

Input LengthCodeBERT 0-100 101-200 201-300 301-400 401-500 500+
0-10 69% 65% 75% 65% 86% 63%
11-20 53% 60% 75% 57% 80% 52%
21-30 46% 57% 65% 57% 50% 65%
31-40 44% 61% 67% 47% 59% 72%
41-50 37% 59% 39% 50% 58% 44%

O
ut

pu
t

L
en

gt
h

50+ 29% 28% 32% 27% 14% 24%

Input LengthGraphCode 0-100 101-200 201-300 301-400 401-500 500+
0-10 76% 72% 77% 71% 76% 65%
11-20 57% 64% 77% 57% 80% 52%
21-30 49% 59% 65% 57% 50% 67%
31-40 52% 61% 68% 53% 59% 74%
41-50 37% 59% 39% 50% 58% 50%

O
ut

pu
t

L
en

gt
h

50+ 32% 28% 33% 29% 18% 25%

Input LengthPLBART 0-100 101-200 201-300 301-400 401-500 500+
0-10 77% 85% 82% 88% 86% 71%
11-20 74% 74% 84% 64% 83% 56%
21-30 78% 74% 70% 57% 50% 67%
31-40 63% 70% 71% 53% 59% 70%
41-50 63% 74% 39% 50% 58% 50%

O
ut

pu
t

L
en

gt
h

50+ 54% 35% 41% 27% 18% 27%

Input LengthCodeT5 0-100 101-200 201-300 301-400 401-500 500+
0-10 81% 89% 82% 94% 95% 72%
11-20 81% 70% 88% 75% 83% 61%
21-30 83% 81% 73% 71% 50% 68%
31-40 63% 76% 79% 60% 59% 68%
41-50 63% 74% 50% 70% 58% 58%

O
ut

pu
t

L
en

gt
h

50+ 57% 37% 42% 29% 21% 21%

Input LengthUniXcoder 0-100 101-200 201-300 301-400 401-500 500+
0-10 83% 83% 86% 88% 95% 72%
11-20 82% 79% 88% 71% 83% 60%
21-30 83% 74% 73% 63% 50% 71%
31-40 63% 73% 79% 60% 59% 68%
41-50 63% 74% 50% 60% 58% 58%

O
ut

pu
t

L
en

gt
h

50+ 54% 32% 38% 31% 21% 27%

2) Lack of Repair Ingredients and Long Sequence Problem:
As described in Finding 7, the input/output length limit
of the model make LLMCs can not cover sufficient repair
ingredients, which in turn constraints the repair capability.
Furthermore, Finding 12 also points out that LLMCs suffer
from the long sequence problem.

D1: Precise context extraction. Through data/control flow analysis,
we can trim irrelevant context [39], aid in pinpointing defect
locations and guide repairs.
D2: Essential repair ingredients. We can integrate traditional APR
techniques based on redundancy assumptions [52] with LLMCs to
introduce additional repair elements into the model input.
D3: Breaking the length limit. One way to model long sequences
for covering more repair ingredients is MegaByte [57]. In addition,
adopting sliding-encoder and decoder (SLED) [26] to partition the
input into overlapping chunks may also help accept long and/or
dependent methods.

3) Computing Resource and Model Size: As described
in Finding 8, generally the large model size raises high
demands for computing resources. Therefore, how to optimize
the deployment of LLMCs for application in low-resource
scenarios is a practical problem.

D1: Model distillation. It optimizes existing model sizes while
maintaining performance close to the original model [58].
D2: Efficient inference. Sparse mechanism [27] and limited dis-
crepancy beam search [28] can also be applied when generating
larger number of candidate patches.
D3: Parameter-efficient fine-tuning (PEFT). We can refine fine-
tuning strategies by employing PEFT techniques, known for their
efficiency and low-resource nature [59].

4) Long-tail Problem: As described in Finding 11, the
long-tail problem caused by imbalanced type distribution in
vulnerability repair tasks remains a key challenge. Also, there
is the small sample problem. Previous works [39], [41] have
proposed using transfer learning to alleviate this problem.

D1: Data augmentation. Designing data augmentation schemes [60]
can expand the number of training samples and mitigate the
challenge of small sample sizes.
D2: Combining multiple PLs. We can also use meta learning [61]
that integrates multiple PLs to enhance the multilingual repair
capability of LLMCs.

5) Multi-Hunk Fixes: As described in Finding 10, LLMCs
still have difficulty dealing with complex multi-hunk fixes.

D1: Capturing complex code dependencies. Tree [24] or graph [62]
structures that capture global dependencies can enhance the model’s
ability to understand and handle complex repair tasks.
D2: Extracting in-depth semantic information. Leveraging high-
level semantic information (such as bytecode [63] and intermediate
representation [64]) can aid the model in comprehending the root
cause of defects, thereby enhancing its repair capability.

VIII. THREATS TO VALIDITY

Internal. Existing approaches typically use different train-
ing datasets, patch space sizes, post-processing strategies, and
other details, and it would be unfair to compare these APR
tools directly [65]. To mitigate this threat, we used the same
dataset and beam size as baselines. Note that when comparing
with DEAR [24], their paper did not specify a specific patch
space size, so we followed the practice of previous works [9],
[42], [50] and chose a minimum beam size of 100 [9].
Also, our work did not use patch filtering and re-ranking
strategies, whereas some baselines like DEAR adopted the
post-processing for improvement. Therefore, our results could
be further improved and our comparison is fair for baselines.

External. Although we have conducted a comprehensive
study of 5 LLMCs for APR, with a variety of scenarios (e.g.,
3 defect types, 7 test benchmarks, and 3 PLs), our results
may still not generalize well to other LLMCs and PLs [66].

TABLE XV: Repair results of LLMCs across different error types.
Error Type Sample CodeBERT GraphCode PLBART CodeT5 UniXcoder Error Type Sample CodeBERT GraphCode PLBART CodeT5 UniXcoder

no-new-symbol 1 100.0% 100.0% 100.0% 100.0% 100.0% no-extra-bind 69 73.9% 72.5% 73.9% 75.4% 75.4%
no-compare-neg-zero 2 0.0% 0.0% 0.0% 0.0% 0.0% no-case-declarations 73 68.5% 67.1% 67.1% 68.5% 71.2%
no-ex-assign 4 50.0% 50.0% 50.0% 50.0% 50.0% no-fallthrough 75 78.7% 76.0% 76.0% 78.7% 80.0%
for-direction 5 40.0% 60.0% 20.0% 80.0% 80.0% no-inner-declarations 84 53.6% 56.0% 46.4% 59.5% 56.0%
no-unsafe-finally 7 42.9% 42.9% 42.9% 42.9% 57.1% no-array-constructor 98 86.7% 86.7% 85.7% 86.7% 84.7%
use-isnan 8 37.5% 37.5% 25.0% 50.0% 50.0% no-constant-condition 129 54.3% 49.6% 48.1% 58.9% 52.7%
no-dupe-class-members 12 0.0% 0.0% 0.0% 8.3% 8.3% generator-star-spacing 140 72.1% 70.0% 69.3% 75.0% 77.1%
no-class-assign 12 66.7% 58.3% 58.3% 75.0% 66.7% no-extra-boolean-cast 146 61.6% 61.6% 50.7% 61.0% 64.4%
no-func-assign 15 40.0% 60.0% 53.3% 60.0% 53.3% no-cond-assign 152 53.9% 50.0% 52.6% 56.6% 54.6%
no-empty-pattern 18 38.9% 50.0% 38.9% 44.4% 50.0% no-process-exit 152 43.4% 42.8% 38.8% 44.1% 43.4%
no-unused-labels 19 57.9% 63.2% 52.6% 57.9% 63.2% no-empty 207 41.1% 41.1% 37.7% 40.1% 45.4%
no-duplicate-case 20 65.0% 65.0% 60.0% 65.0% 65.0% no-dupe-keys 219 60.3% 60.3% 58.0% 63.5% 63.0%
getter-return 21 61.9% 61.9% 61.9% 57.1% 52.4% prefer-spread 250 56.4% 52.0% 46.4% 55.6% 54.0%
no-sparse-arrays 24 33.3% 41.7% 45.8% 50.0% 45.8% no-useless-escape 293 39.2% 36.5% 33.1% 47.4% 45.1%
no-const-assign 28 32.1% 28.6% 39.3% 42.9% 35.7% no-console 307 77.2% 78.2% 77.2% 77.2% 79.2%
no-global-assign 32 78.1% 78.1% 65.6% 81.2% 78.1% guard-for-in 324 48.8% 47.5% 38.6% 54.3% 52.8%
no-new-wrappers 36 38.9% 41.7% 41.7% 55.6% 52.8% no-throw-literal 408 71.8% 68.1% 69.1% 77.0% 75.7%
no-this-before-super 42 76.2% 83.3% 69.0% 85.7% 83.3% no-debugger 417 96.4% 96.9% 95.9% 96.9% 96.2%
no-unsafe-negation 43 67.4% 76.7% 76.7% 79.1% 79.1% prefer-rest-params 459 42.3% 42.5% 35.7% 47.3% 47.5%
require-yield 43 79.1% 72.1% 81.4% 83.7% 76.7% no-unreachable 473 72.1% 70.8% 70.2% 74.2% 74.0%
no-new-object 45 64.4% 64.4% 62.2% 68.9% 68.9% no-extra-semi 598 85.8% 84.4% 85.8% 86.5% 86.8%
no-caller 45 22.2% 22.2% 22.2% 31.1% 28.9% no-redeclare 639 57.9% 58.4% 57.0% 62.6% 61.7%
no-extend-native 45 40.0% 46.7% 33.3% 51.1% 46.7% comma-style 640 60.9% 55.5% 52.7% 63.7% 61.3%
constructor-super 47 80.9% 80.9% 80.9% 80.9% 78.7% no-unused-vars 777 64.2% 62.3% 59.2% 65.1% 65.9%
valid-typeof 54 57.4% 55.6% 40.7% 63.0% 57.4% no-undef 1064 31.5% 30.5% 25.2% 35.7% 35.0%
no-self-assign 61 50.8% 50.8% 45.9% 54.1% 52.5% no-invalid-this 1622 46.2% 46.5% 42.1% 50.1% 50.0%

For example, we did not include extremely LLMs (e.g., GPT-
NeoX-20B) for APR, mainly because of the limited computing
resource. However, we believe our results are representative
for a relatively wide range of conditions. We will enhance
it with more advanced resources and expect researchers of
following work could improve our study.

IX. RELATED WORK

A. LLMC-based APR

Mashhadi et al. [67] first used CodeBERT fine-tuning
to solve single-line bug repair problems. Later, Huang et
al. [68] investigated the repair effectiveness of using Code-
BERT and GraphCodeBERT based on fine-tuning. Recently,
Xia et al. [17] introduced cloze tasks into the APR domain,
which uses LLMCs to predict the correct code for defect loca-
tions with context. They proposed the APR tool AlphaRepair
based on CodeBERT and zero-shot learning, which provides
a new direction towards APR. In addition, Xia et al. [52]
proposed another novel APR tool, FitRepair, based on CodeT5,
which combines the plastic surgery hypothesis with LLMCs
to provide additional repair ingredients and thus enhance the
repair capability of LLMCs. With the recent popularity of
ChatGPT [69], Xia et al. [70] proposed ChatRepair, a conver-
sational APR tool that provides a new workflow using LLMs
by continuously learning knowledge and receiving feedback
to enhance repair capability.

B. Study on LLMC for APR

Fan et al. [21] investigated whether APR techniques can
improve the reliability of code produced by LLMCs (Codex)
and provide suggestions for enhancing APR with the help of
LLMCs. Xia et al. [16] and Pearce et al. [23] comprehensively
explored the performance of LLMCs in bug and vulnerability
repair tasks using the zero/few-shot learning paradigm. Be-
sides, some studies [30], [31] systematically compared LLMCs
on various tasks, which partially include APR. Unlike their
work, we focus on the repair capabilities of LLMCs under
the NMT fine-tuning paradigm. One similar work is Jiang et
al. [22], which also used the fine-tuning paradigm. However,

they focused on the comparison between zero-shot and fine-
tuning for APR, and only explored the single-hunk Java bug
repair task. In contrast, we make a comprehensive exploration
of fine-tuning LLMCs for APR across multiple languages,
various defect types, and different levels of bug/vulnerability
complexity. We also provide guidance on selecting the appro-
priate designs to enhance the repair capabilities of LLMCs,
and achieve the new SOTA results.

X. CONCLUSION

This paper conducts a comprehensive study on the repair
capabilities of LLMCs in various repair scenarios under the
NMT fine-tuning paradigm. Our results show that even without
any post-processing strategies, LLMCs can already achieve
excellent results, and surpass many previous APR works.
Importantly, we present some practical guidelines on how to
choose different designs to better exploit the repair capability
of LLMCs, and show how they can repair complex defects.
We also analyze and discuss some limitations found during the
evaluation and point out future directions. Furthermore, our
results on various benchmarks can serve as the baselines for
subsequent works with reference. In conclusion, LLMC-based
APR has great potential for practical use, and more efforts are
needed to promote LLM4APR research in the future.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their insightful
comments to improve this paper. This work was partially
supported by the National Key R&D Project (2023QY1202),
National Natural Science Foundation of China (U1836210),
and Hainan Key R&D Project (GHYF2022010). This work
was also partially supported by the National Research Foun-
dation, Singapore, and the Cyber Security Agency under
its National Cybersecurity R&D Programme (NCRP25-P04-
TAICeN). Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of the author(s)
and do not reflect the views of National Research Foundation,
Singapore and Cyber Security Agency of Singapore.

REFERENCES

[1] M. Monperrus, “Automatic software repair: A bibliography,” ACM
Comput. Surv., vol. 51, no. 1, pp. 17:1–17:24, 2018.

[2] L. Gazzola, D. Micucci, and L. Mariani, “Automatic software repair: A
survey,” IEEE Trans. Software Eng., vol. 45, no. 1, pp. 34–67, 2019.

[3] C. L. Goues, M. Pradel, and A. Roychoudhury, “Automated program
repair,” Commun. ACM, vol. 62, no. 12, pp. 56–65, 2019.

[4] X. Gao, Y. Noller, and A. Roychoudhury, “Program repair,” arXiv
preprint arXiv:2211.12787, 2022.

[5] Q. Zhang, C. Fang, Y. Ma, W. Sun, and Z. Chen, “A survey of learning-
based automated program repair,” arXiv preprint arXiv:2301.03270,
2023.

[6] K. Huang, Z. Xu, S. Yang, H. Sun, X. Li, Z. Yan, and Y. Zhang,
“A survey on automated program repair techniques,” arXiv preprint
arXiv:2303.18184, vol. abs/2303.18184, 2023.

[7] M. Tufano, C. Watson, G. Bavota, M. D. Penta, M. White, and
D. Poshyvanyk, “An empirical study on learning bug-fixing patches
in the wild via neural machine translation,” ACM Trans. Softw. Eng.
Methodol., vol. 28, no. 4, pp. 19:1–19:29, 2019.

[8] N. Jiang, T. Lutellier, and L. Tan, “CURE: code-aware neural machine
translation for automatic program repair,” in Proceedings of the 43rd
International Conference on Software Engineering, ICSE, 2021, pp.
1161–1173.

[9] Q. Zhu, Z. Sun, Y. Xiao, W. Zhang, K. Yuan, Y. Xiong, and L. Zhang, “A
syntax-guided edit decoder for neural program repair,” in Proceedings
of the 29th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE,
2021, pp. 341–353.

[10] Z. Chen, S. Kommrusch, M. Tufano, L. Pouchet, D. Poshyvanyk, and
M. Monperrus, “Sequencer: Sequence-to-sequence learning for end-to-
end program repair,” IEEE Trans. Software Eng., vol. 47, no. 9, pp.
1943–1959, 2021.

[11] Y. Li, S. Wang, and T. N. Nguyen, “Dlfix: context-based code transfor-
mation learning for automated program repair,” in Proceedings of the
42nd International Conference on Software Engineering, ICSE, 2020,
pp. 602–614.

[12] T. Lutellier, H. V. Pham, L. Pang, Y. Li, M. Wei, and L. Tan, “Coconut:
combining context-aware neural translation models using ensemble for
program repair,” in Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA, 2020, pp. 101–114.

[13] M. Yasunaga and P. Liang, “Graph-based, self-supervised program repair
from diagnostic feedback,” in Proceedings of the 37th International
Conference on Machine Learning, ICML, vol. 119, 2020, pp. 10 799–
10 808.

[14] H. Ye, M. Martinez, and M. Monperrus, “Neural program repair
with execution-based backpropagation,” in Proceedings of the 44th
IEEE/ACM 44th International Conference on Software Engineering,
ICSE, 2022, pp. 1506–1518.

[15] X. Meng, X. Wang, H. Zhang, H. Sun, X. Liu, and C. Hu, “Template-
based neural program repair,” in Proceedings of the 45th International
Conference on Software Engineering, ICSE, 2023, pp. 1456–1468.

[16] C. S. Xia, Y. Wei, and L. Zhang, “Automated program repair in the
era of large pre-trained language models,” in Proceedings of the 45th
International Conference on Software Engineering, ICSE, 2023, pp.
1482–1494.

[17] C. S. Xia and L. Zhang, “Less training, more repairing please: revisiting
automated program repair via zero-shot learning,” in Proceedings of
the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE,
2022, pp. 959–971.

[18] M. Fu, C. Tantithamthavorn, T. Le, V. Nguyen, and D. Q. Phung, “Vulre-
pair: a t5-based automated software vulnerability repair,” in Proceedings
of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE,
2022, pp. 935–947.

[19] H. Joshi, J. P. C. Sánchez, S. Gulwani, V. Le, I. Radicek, and G. Ver-
bruggen, “Repair is nearly generation: Multilingual program repair with
llms,” arXiv preprint arXiv:2208.11640, 2022.

[20] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, and M. Zhou, “Codebert: A pre-trained model for
programming and natural languages,” in Findings of the Association for
Computational Linguistics: EMNLP, ser. ACL, 2020, pp. 1536–1547.

[21] Z. Fan, X. Gao, A. Roychoudhury, and S. H. Tan, “Automated
repair of programs from large language models,” arXiv preprint
arXiv:2205.10583, 2022.

[22] N. Jiang, K. Liu, T. Lutellier, and L. Tan, “Impact of code language
models on automated program repair,” in Proceedings of the 45th
International Conference on Software Engineering, ICSE, 2023, p.
1430–1442.

[23] H. Pearce, B. Tan, B. Ahmad, R. Karri, and B. Dolan-Gavitt, “Examining
zero-shot vulnerability repair with large language models,” in 2023 IEEE
Symposium on Security and Privacy, SP, 2022, pp. 1–18.

[24] Y. Li, S. Wang, and T. N. Nguyen, “Dear: A novel deep learning-
based approach for automated program repair,” in Proceedings of the
44th International Conference on Software Engineering, ICSE, 2022,
pp. 511–523.

[25] B. Berabi, J. He, V. Raychev, and M. Vechev, “Tfix: Learning to fix cod-
ing errors with a text-to-text transformer,” in International Conference
on Machine Learning, ICML, 2021, pp. 780–791.

[26] M. Ivgi, U. Shaham, and J. Berant, “Efficient long-text understanding
with short-text models,” Transactions of the Association for Computa-
tional Linguistics, vol. 11, pp. 284–299, 2023.

[27] S. Jaszczur, A. Chowdhery, A. Mohiuddin, L. Kaiser, W. Gajewski,
H. Michalewski, and J. Kanerva, “Sparse is enough in scaling trans-
formers,” Advances in Neural Information Processing Systems, NIPS,
vol. 34, pp. 9895–9907, 2021.

[28] D. Furcy and S. Koenig, “Limited discrepancy beam search,” in Proceed-
ings of the 19th International Joint Conference on Artificial Intelligence,
IJCAI, 2005, pp. 125–131.

[29] “Llmc4apr study.” [Online]. Available: https://github.com/LLMC-APR/
STUDY

[30] Z. Zeng, H. Tan, H. Zhang, J. Li, Y. Zhang, and L. Zhang, “An extensive
study on pre-trained models for program understanding and generation,”
in Proceedings of the 31st International Symposium on Software Testing
and Analysis, ISSTA, 2022, pp. 39–51.

[31] C. Niu, C. Li, V. Ng, D. Chen, J. Ge, and B. Luo, “An empirical
comparison of pre-trained models of source code,” in Proceedings of
the 45th International Conference on Software Engineering, ICSE, 2023,
pp. 2136–2148.

[32] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, L. Shujie, L. Zhou,
N. Duan, A. Svyatkovskiy, S. Fu et al., “Graphcodebert: Pre-training
code representations with data flow,” in International Conference on
Learning Representations, ICLR, 2021.

[33] S. Liu, B. Wu, X. Xie, G. Meng, and Y. Liu, “Contrabert: Enhanc-
ing code pre-trained models via contrastive learning,” arXiv preprint
arXiv:2301.09072, 2023.

[34] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco,
C. Clement, D. Drain, D. Jiang, D. Tang et al., “Codexglue: A machine
learning benchmark dataset for code understanding and generation,” in
Proceedings of the 35th Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 1), 2021.

[35] A. Svyatkovskiy, S. K. Deng, S. Fu, and N. Sundaresan, “Intellicode
compose: Code generation using transformer,” in Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE,
2020, pp. 1433–1443.

[36] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri,
G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan,
S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian,
C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis,
E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak,
J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse,
A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Rad-
ford, M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder,
B. McGrew, D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba,
“Evaluating large language models trained on code,” arXiv preprint
arXiv:2107.03374, 2021.

[37] Y. Wang, W. Wang, S. R. Joty, and S. C. H. Hoi, “Codet5: Identifier-
aware unified pre-trained encoder-decoder models for code understand-
ing and generation,” in Proceedings of the Empirical Methods in Natural
Language Processing, EMNLP, 2021, pp. 8696–8708.

[38] W. U. Ahmad, S. Chakraborty, B. Ray, and K. Chang, “Unified pre-
training for program understanding and generation,” in Proceedings of
the 2021 Conference of the North American Chapter of the Association

https://github.com/LLMC-APR/STUDY
https://github.com/LLMC-APR/STUDY

for Computational Linguistics: Human Language Technologies, NAACL-
HLT, 2021, pp. 2655–2668.

[39] J. Chi, Y. Qu, T. Liu, Q. Zheng, and H. Yin, “Seqtrans: Automatic vul-
nerability fix via sequence to sequence learning,” IEEE Trans. Software
Eng., vol. 49, no. 2, pp. 564–585, 2023.

[40] X. Li, S. Liu, R. Feng, G. Meng, X. Xie, K. Chen, and Y. Liu,
“Transrepair: Context-aware program repair for compilation errors,”
in Proceedings of the 37th International Conference on Automated
Software Engineering, ASE, 2022, pp. 1–13.

[41] Z. Chen, S. Kommrusch, and M. Monperrus, “Neural transfer learning
for repairing security vulnerabilities in C code,” IEEE Trans. Software
Eng., vol. 49, no. 1, pp. 147–165, 2023.

[42] W. Yuan, Q. Zhang, T. He, C. Fang, N. Q. V. Hung, X. Hao, and H. Yin,
“Circle: continual repair across programming languages,” in Proceedings
of the 31st International Symposium on Software Testing and Analysis,
ISSTA, 2022, pp. 678–690.

[43] M. Evtikhiev, E. Bogomolov, Y. Sokolov, and T. Bryksin, “Out of the
bleu: how should we assess quality of the code generation models?”
arXiv preprint arXiv:2208.03133, 2022.

[44] H. Ye, M. Martinez, X. Luo, T. Zhang, and M. Monperrus, “Selfapr:
Self-supervised program repair with test execution diagnostics,” in Pro-
ceedings of the 37th International Conference on Automated Software
Engineering, ASE, 2022, pp. 1–13.

[45] X. Meng, X. Wang, H. Zhang, H. Sun, and X. Liu, “Improving fault
localization and program repair with deep semantic features and trans-
ferred knowledge,” in Proceedings of the 44th International Conference
on Software Engineering, ICSE, 2022, pp. 1169–1180.

[46] D. Guo, S. Lu, N. Duan, Y. Wang, M. Zhou, and J. Yin, “Unixcoder:
Unified cross-modal pre-training for code representation,” in Proceed-
ings of the 60th Annual Meeting of the Association for Computational
Linguistics, ACL, 2022, pp. 7212–7225.

[47] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in Pro-
ceedings of the 2014 International Symposium on Software Testing and
Analysis, ISSTA, 2014, pp. 437–440.

[48] J. Fan, Y. Li, S. Wang, and T. N. Nguyen, “A c/c++ code vulnerability
dataset with code changes and cve summaries,” in Proceedings of the
17th International Conference on Mining Software Repositories, MSR,
2020, pp. 508–512.

[49] G. Bhandari, A. Naseer, and L. Moonen, “Cvefixes: automated collec-
tion of vulnerabilities and their fixes from open-source software,” in
Proceedings of the 17th International Conference on Predictive Models
and Data Analytics in Software Engineering, PROMISE, 2021, pp. 30–
39.

[50] N. Jiang, T. Lutellier, Y. Lou, L. Tan, D. Goldwasser, and X. Zhang,
“Knod: Domain knowledge distilled tree decoder for automated program
repair,” in Proceedings of the 45th International Conference on Software
Engineering, ICSE, 2023, pp. 1251–1263.

[51] Z. Chen and M. Monperrus, “The codrep machine learning on source
code competition,” arXiv preprint arXiv:1807.03200, 2018.

[52] C. S. Xia, Y. Ding, and L. Zhang, “Revisiting the plastic surgery hy-
pothesis via large language models,” arXiv preprint arXiv:2303.10494,
2023.

[53] B. Baudry, Z. Chen, K. Etemadi, H. Fu, D. Ginelli, S. Kommrusch,
M. Martinez, M. Monperrus, J. R. Arteaga, H. Ye, and Z. Yu, “A
software-repair robot based on continual learning,” IEEE Softw., vol. 38,
no. 4, pp. 28–35, 2021.

[54] C. Shao and Y. Feng, “Overcoming catastrophic forgetting beyond
continual learning: Balanced training for neural machine translation,”
arXiv preprint arXiv:2203.03910, 2022.

[55] “Unixcoder-base-nine.” [Online]. Available: https://huggingface.co/
microsoft/unixcoder-base-nine

[56] “2022 cwe top 25 most dangerous software weaknesses,”
2022. [Online]. Available: https://cwe.mitre.org/top25/archive/2022/
2022 cwe top25.html

[57] L. Yu, D. Simig, C. Flaherty, A. Aghajanyan, L. Zettlemoyer, and
M. Lewis, “Megabyte: Predicting million-byte sequences with multiscale
transformers,” 2023.

[58] K. J. Liang, W. Hao, D. Shen, Y. Zhou, W. Chen, C. Chen, and
L. Carin, “Mixkd: Towards efficient distillation of large-scale language
models,” in Proceedings of the 9th International Conference on Learning
Representations, ICLR, 2021.

[59] M. Sourab, G. Sylvain, D. Lysandre, B. Younes, and P. Sayak,
“Peft: State-of-the-art parameter-efficient fine-tuning methods,” 2022.
[Online]. Available: https://github.com/huggingface/peft

[60] Y. Nong, Y. Ou, M. Pradel, F. Chen, and H. Cai, “Vulgen: Realistic
vulnerability generation via pattern mining and deep learning,” in Pro-
ceedings of the 45th International Conference on Software Engineering,
ICSE, 2023.

[61] C. Park, Y. Tae, T. Kim, S. Yang, M. A. Khan, L. Park, and J. Choo,
“Unsupervised neural machine translation for low-resource domains
via meta-learning,” in Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing, ACL/IJCNLP, 2021,
pp. 2888–2901.

[62] S. Liu, X. Xie, J. K. Siow, L. Ma, G. Meng, and Y. Liu, “Graphsearchnet:
Enhancing gnns via capturing global dependencies for semantic code
search,” IEEE Trans. Software Eng., vol. 49, no. 4, pp. 2839–2855,
2023.

[63] A. Ghanbari, S. Benton, and L. Zhang, “Practical program repair via
bytecode mutation,” in Proceedings of the 28th International Symposium
on Software Testing and Analysis, ISSTA, 2019, pp. 19–30.

[64] Z. Li, P. Ma, H. Wang, S. Wang, Q. Tang, S. Nie, and S. Wu, “Un-
leashing the power of compiler intermediate representation to enhance
neural program embeddings,” in Proceedings of the 44th International
Conference on Software Engineering, ICSE, 2022, pp. 2253–2265.

[65] W. Zhong, H. Ge, H. Ai, C. Li, K. Liu, J. Ge, and B. Luo, “Standup4npr:
Standardizing setup for empirically comparing neural program repair
systems,” in Proceedings of the 37th International Conference on
Automated Software Engineering, ASE, 2022, pp. 1–13.

[66] R. Widyasari, S. Q. Sim, C. Lok, H. Qi, J. Phan, Q. Tay, C. Tan, F. Wee,
J. E. Tan, Y. Yieh, B. Goh, F. Thung, H. J. Kang, T. Hoang, D. Lo, and
E. L. Ouh, “Bugsinpy: A database of existing bugs in python programs to
enable controlled testing and debugging studies,” in Proceedings of the
28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE,
2020, p. 1556–1560.

[67] E. Mashhadi and H. Hemmati, “Applying codebert for automated
program repair of java simple bugs,” in Proceedings of the 18th
International Conference on Mining Software Repositories, MSR, 2021,
pp. 505–509.

[68] K. Huang, S. Yang, H. Sun, C. Sun, X. Li, and Y. Zhang, “Repairing se-
curity vulnerabilities using pre-trained programming language models,”
in Proceedings of the 52nd Annual IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops, DSN-W, 2022, pp.
111–116.

[69] “Introducing chatgpt,” 2022. [Online]. Available: https://openai.com/
blog/chatgpt

[70] C. S. Xia and L. Zhang, “Keep the conversation going: Fixing
162 out of 337 bugs for $0.42 each using chatgpt,” arXiv preprint
arXiv:2304.00385, 2023.

https://huggingface.co/microsoft/unixcoder-base-nine
https://huggingface.co/microsoft/unixcoder-base-nine
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://github.com/huggingface/peft
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt

	Introduction
	Methodology
	Large Language Model of Code
	Overall Workflow
	Data Pre-processing
	Code Abstraction
	Code Representation
	Code Tokenization

	Model Training and Tuning
	Model Evaluation
	Patch Generation and Validation

	Experimental Setup
	Research Questions
	Studied LLMCs
	Datasets and Baselines
	Software Bug Repair
	Security Vulnerability Repair
	Programming Error Repair

	Implementation

	Software Bug Repair
	Empirical Results
	Research Questions
	RQ1
	RQ2
	RQ3

	Security Vulnerability Repair
	Empirical Results
	Research Questions
	RQ1
	RQ2
	RQ3

	Programming Error Repair
	Empirical Results
	Research Questions
	RQ1
	RQ2
	RQ3

	Discussion
	Loss of Pre-trained Knowledge
	Lack of Repair Ingredients and Long Sequence Problem
	Computing Resource and Model Size
	Long-tail Problem
	Multi-Hunk Fixes

	Threats to Validity
	Related Work
	LLMC-based APR
	Study on LLMC for APR

	Conclusion
	References

