
Learning to Locate and Describe Vulnerabilities
Jian Zhang†, Shangqing Liu†∗, Xu Wang‡§, Tianlin Li†, and Yang Liu†

†Nanyang Technological University, Singapore
‡SKLSDE Lab, Beihang University, Beijing, China

{jian zhang, liu.shangqing, tianlin001, yangliu}@ntu.edu.sg, xuwang@buaa.edu.cn

Abstract—Automatically discovering software vulnerabilities is
a long-standing pursuit for software developers and security
analysts. Since detection tools usually provide limited information
for vulnerability inspection, recent work turns the attention to
identify fine-grained vulnerabilities, i.e., vulnerable statements.
However, existing work for vulnerability localization struggles to
capture long-range and integral dependency information due to
the bottleneck of Graph Neural Networks (GNNs). Moreover, lit-
tle research has been done to help developers understand detected
vulnerabilities, leaving vulnerability diagnosis a challenging task.
In this paper, we propose VulTeller, a deep learning-based
approach that can automatically locate vulnerable statements in
a function and more importantly, can describe the vulnerability.
Our approach focuses on extracting precise control and data
dependencies in the code, achieved through modeling control
flow paths and employing taint analysis. We design a novel neural
model that encodes the control flows and taint flows which reside
in the control flow paths, and decodes them via node classification
and an attentional decoder for the two tasks respectively. We
conduct extensive experiments with real-world vulnerabilities to
evaluate the proposed approach. The evaluation results, including
quantitative measurement and human evaluation, demonstrate
that our approach is highly effective and outperforms state-of-
the-art approaches. Our work for the first time formulates the
problem of vulnerability description generation, and makes one
step further towards automated vulnerability diagnosis.

Index Terms—Vulnerability Diagnosis, Vulnerability Localiza-
tion, Description Generation, Deep Learning

I. INTRODUCTION

Vulnerabilities are typically security weaknesses in software
or systems that can be exploited by attackers to perform
malicious actions [1]. Therefore, it is crucial to rapidly dis-
cover and eliminate vulnerabilities to prevent security risks.
However, in practice, developers often spend considerable time
for fixing a vulnerability, especially when they do not know
the weakness (e.g., potential attacks) [2], [3]. Hence, in order
to facilitate vulnerability repair, it is also vital to explore
automated detection and diagnosis techniques that cater to the
vulnerability information needs of developers [4].

Prior studies have devoted a substantial effort towards
automated vulnerability detection and they can be roughly
categorized into static analysis-based and deep learning-based
(DL-based) approaches. In general, static analysis tools tend
to report an excess of false positives since they usually rely on
a set of manually pre-defined rules [4], [5]. It is difficult and
time-consuming for developers to find out the real vulnerabil-
ities in redundant and trivial reported issues because most of

∗Corresponding author.
§Also with Zhongguancun Laboratory, Beijing, P.R.China.

the information is meaningless [6]. On the contrary, DL-based
models have demonstrated their superiority in vulnerability
detection by capturing complex code semantics [7], [8], [9].
However, most of these DL-based approaches only report vul-
nerabilities at the function level (i.e., predicting vulnerable or
not). As a result, verifying the reported vulnerability becomes
another burden for developers or even security experts due to
no enough information [10].

To alleviate the problem, recent work aims to locate vulner-
able statements with different DL-based approaches [11], [12],
[13], [14]. Existing work can be divided into two categories
according to their methodology: feature learning and end-
to-end learning. Feature learning means that the vulnerable
statements are predicted via inner layer features of function-
level detection models. For example, IVDetect employs Graph
Convolution Network (GCN) over program dependence graph
(PDG) of source code for function-level vulnerability detec-
tion, and derives the vulnerable statements of subgraphs as
the interpretation using the learned features [12]. However,
such features are not necessarily consistent with the vulnerable
statements, since a vulnerability usually includes many fewer
locations (e.g., single lines) compared to that of the subgraph.
Consequently, the performance is found to be not satisfactory
when used for locating vulnerable statements [14]. For this
reason, LineVD learns to locate vulnerable statements in a
fully supervised manner based on PDG and Graph Attention
Network (GAT), which achieves a significant improvement
[14]. Such approaches are beneficial for reducing the time
cost of debugging a discovered vulnerability, yet they still
have two main limitations. First, existing vulnerability local-
ization approaches simply borrow off-the-shelf Graph Neural
Networks (GNNs). As GNNs are usually designed to capture
neighborhood information, whereas the size of program graphs
such as PDG can be very large (e.g., an average of 158 nodes
and 487 edges in our dataset). Hence, applying them to large
program graphs weakens the capability for obtaining precise
dependencies including long-range and integral dependency
information [15], [16], [17]. Second, in practice, misunder-
standing of security concepts is quite common for developers
due to lack of security knowledge [18], [19]. Therefore, it
remains challenging to figure out the behavior and reason for
the vulnerability.

In this paper, we propose a novel neural approach namely
VulTeller, which learns to locate vulnerable statements and
meanwhile generate natural language descriptions, so as to
provide additional clues for diagnosing the reported vulnera-

Location: line 3
Description: prealloc_elems_and_freelist in kernel/bpf/stackmap.c in the

Linux kernel before 5.14.12 allows unprivileged users to trigger an eBPF

multiplication integer overflow with a resultant out-of-bounds write.

static int prealloc_elems_and_freelist(struct bpf_stack_map *smap)

{

u32 elem_size = sizeof(struct stack_map_bucket) + smap->map.value_size;

int err;

smap->elems = bpf_map_area_alloc(elem_size * smap->map.max_entries,

smap->map.numa_node);

if (!smap->elems)

return -ENOMEM;

err = pcpu_freelist_init(&smap->freelist);

if (err)

goto free_elems;

pcpu_freelist_populate(&smap->freelist, smap->elems, elem_size,

smap->map.max_entries);

return 0;

free_elems:

bpf_map_area_free(smap->elems);

return err;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Fig. 1. A motivating example of one vulnerable C function from CVE-2021-
41864. The message below the function is the location and description of
the vulnerability that can be automatically reported by our approach. The fix
for the integer overflow of line 3 is to define a variable with greater size
by “u64 elem_size = sizeof(struct stack_map_bucket) +
(u64)smap->map.value_size;” to avoid the out-of-bounds write.

bility. That is, we separate it into two sub-tasks: vulnerability
localization and description generation. Suppose the function
prealloc elems and freelist is detected as vulnerable by ex-
isting detectors in Figure 1, and a developer tries to inspect
and confirm it. In most cases, it is difficult to find out the
reason for the vulnerability without additional information.
Fortunately, we can first locate the vulnerable statements to
narrow down the scope of inspection (e.g., line 3), and then
generate descriptive text in the form of natural language to
explain what the vulnerability is and why it occurred. Note
that there can be multiple vulnerable statements in a function.
In this example, an integer overflow can be caused by the
variable declaration statement if an attacker writes a large
value (i.e., out-of-bounds write) to it. By contrast, providing
such messages can substantially reduce the time required for
a developer to identify and remediate vulnerabilities.

The challenge for tackling the two tasks is how to obtain
precise and sufficient vulnerable code semantics. Different
from existing work mentioned earlier, we design a novel neural
model based on control flow graph (CFG) and taint analysis
[20] to better capture control and data flow dependencies in
the functions. Specifically, to analyze the source code of one
suspicious function, we begin by converting it into a CFG
and extracting all simple control flow paths consisting of
multiple nodes. To depict control dependency, we could use
one Recurrent Neural Network (RNN) [21] to encode all these
node sequences. However, the number of paths is usually large,
and most of them would be noise. To obtain precise control
dependency and data dependency, we conduct taint analysis
on the source code, resulting in potentially tainted data flows
from sources to sinks. We rank the control flow paths by their
overlapping frequency with the data flows and select the top-k
paths, which can filter out noise and refine data dependencies.
Next, we use a Bidrectional Gated Recurrent Unit (Bi-GRU)

[22] to encode the top-k paths along with their ranks, and apply
node-wise max pooling to get the vector representation of each
node. To locate vulnerabilities, we perform node classification
to classify each node as vulnerable or not. For description
generation, we use a GRU-based decoder with an attention
mechanism over nodes to generate the word one by one and
finally form the sentence.

We collect real-world C/C++ vulnerabilities for evaluation,
each of which contains the vulnerable function as well as its
vulnerable locations and description. We compare VulTeller
with a variety of baselines including static analysis tools and
DL-based approaches on the dataset. The extensive experi-
mental results demonstrate that VulTeller outperforms these
baselines significantly. We also conduct a human evaluation
to assess the quality of generated descriptions and the results
further confirm the effectiveness of VulTeller. In summary, the
main contributions of this work are as follows:

• We formulate a new problem of vulnerability description
generation. To the best of our knowledge, this is the first
work that aims to generate descriptions of the vulnerabil-
ities, which can further assist developers in vulnerability
diagnosis.

• We propose a novel neural model for vulnerability localiza-
tion and description generation. It leverages the knowledge
from control flows of CFG and data flows of taint analysis to
precisely capture control and data dependency information.

• We conduct extensive experiments on a large-scale dataset
consisting of vulnerabilities from real-world C/C++ projects,
which demonstrates the effectiveness of our approach in
terms of automatic metrics and human evaluation.

II. PROBLEM DEFINITION

Our goal is to facilitate developers in diagnosing newly
discovered vulnerabilities, especially when they lack security
knowledge. To this end, we formulate the problem of vul-
nerability diagnosis as two conjunctive tasks. One is vulner-
ability localization that locates vulnerable statements within
a function. Another is description generation that describes
symptoms and causes of the vulnerability. We formally define
them as follows.

Let F = (t1, t2, . . . , tC) ≡ (s1, s2, . . . , sN) demotes
the source code of a function , where ti, i ∈ [1, C] and
sj , j ∈ [1, N] are the tokens and statements respectively in
the function.
Vulnerability Localization. With the statements S = (s1,. . . ,
sN) as input, the target is to find a subset S′ ⊂ S, each
element of which is a vulnerable statement. Alternatively, a
learning-based model may learn the mapping ϕ : F → Y to
give all the labels of the statements as Y = (y1, y2, . . . , yN),
where yj ∈ {0, 1} indicates if the statement sj is vulnerable
or not.
Description Generation. The input of this task could be either
tokens t1 to tC or statements s1 to sN . The target is to learn
a text generator ψ : F → D that generates natural language
description D = (d1, d2, . . . , dM) to describe the vulnerability

in F where di is the i-th token in the generated sequence of
length M .

In our work, we assume that the vulnerable function has
been reported by a static detector because vulnerability de-
tection is a comparatively well-studied problem, and there
remains extra manual effort for debugging. However, our
approach can also easily generalize to other scenarios by
adding non-vulnerable functions into the training set. For
example, when no statements are located by our model, it
means that the function is predicted to be not vulnerable, and
we do not generate the description for it. We provide the details
of our approach in the next section.

III. APPROACH

A. Overview

Existing studies [8], [12], [14], [23] have confirmed that
utilizing the dependency information from graph structures
is able to capture complex program semantics. However, it
is still under-explored regarding the feasibility of directly
borrowing GNNs on vulnerability discovery, including Graph
Convolutional Network (GCN) [24], Gated Graph Neural
Network (GGNN) [25] and Graph Attention Network (GAT)
[26] that are designed to analyze spectral graphs instead of
program graphs. GNNs are capable of capturing the local
information from the neighborhood nodes, while the long-
range dependencies from the remote nodes are prone to be
missed [15], [16]. Unfortunately, program graphs especially
program dependency graph (PDG) are usually large (e.g., up
to 10k nodes in Sec. 4.1). As a result, existing GNNs may
not precisely capture the node dependencies and thus weakens
the performance. Therefore, we propose a novel approach to
overcome the drawback. On the one hand, we use the control
flow graph (CFG) instead of PDG as a basis because of its
moderate size while carrying essential semantics in the form
of control flows. On the other hand, in order to consider data
dependencies, we adopt taint analysis to identify tainted data
flows in it. Based on them, we devise a novel neural model
to capture precise control and data dependencies for the two
tasks.

The overall workflow of our approach is shown in Figure
2. In the representation phase, we parse a code fragment into
CFG and simplify it by node reduction to remove redundant
nodes. We extract the control flow paths (CFPs) from the
simplified CFG. Due to the path explosion problem and noises
in them, taint analysis is adopted to identify potentially tainted
data flows and CFPs are ranked based on their overlap with
tainted flows, allowing us to keep the top-k CFPs with ranks
that indicate priorities. Next, we use a bidirectional GRU
module to encode selected CFPs into node vectors. Note that
each node may have multiple vectors, we consider the ranks of
their corresponding CFPs as an additional feature to form new
vectors. Afterwards, we perform the max pooling over those
new vectors and get the node representations. For vulnerability
localization, we transform it into a node classification problem,
where each node (i.e., statement) is predicted as vulnerable
or not; For description generation, we adopt a GRU decoder

void recvmsg (char *msg){

strcpy(buffer, msg);

}

Source Code
Parsing

CFP
Extraction

Taint Analysis

Path Ranking

CFG
Tainted

Data Flows

CFPs
Top-k
CFPs

Path
Encoder

Node
Features

Decoders

Locations

Description

Representation Refinement Model

Input Output
Vulnerable function

Fig. 2. The overall workflow of our approach.

with node attention to generate sentences that describe the
vulnerability.

B. Representation

Given the source code of one function, we use an off-the-
shelf parser (e.g., Joern [27]) to get the CFG representation.
Nevertheless, the representations of CFG vary on the granular-
ity of basic blocks. For instance, Joern treats the basic block as
one basic operation (e.g., arithmetic operation) and separates
one statement into several iterative operations (nodes). Such a
practice is useful to know the micro semantics, but they are
not suitable for node classification that determines vulnerable
statements. To simplify it, we cut off nodes that are elements
of other nodes while keep the original control flows. For
example, if the control flow is “1 → 2 → 3 → 5” and
node 2 belong to the statement of node 3, we convert it to
“1 → 3 → 5”. Formally, let Go = (Vo, Eo) denote the
original CFG, where Vo and Eo are the sets of nodes and
edges respectively. We can simplify Go by node reduction,
that is, vi = reduce(v′j , . . . , v

′
k), v

′ ∈ Vo∧vi ∈ V if v′j , . . . , v
′
k

come from the statement si. Likewise, the edges are simplified
accordingly. Through simplification, we obtain the simplified
CFG as G = (V, E).

After that, we extract control flow paths from it. In this
paper, we define a control flow path as one simple path from
the entry to the exit of a CFG. Here simple path means that a
path may have repeat nodes but not edges. This is to consider
the semantics of loops that may incur a vulnerability. The
algorithm for extracting simple paths is performing a depth-
first-search over the nodes of CFG and recording visited edges,
which yields the edges in order. We sort out the edges and get
the sequences of nodes as full CFPs. For convenience, we
denote them as P = {p1, p2, . . . , pT } and each p has multiple
nodes from V .

C. Refinement

When we have the full CFPs, a straightforward practice
is to consider all of them as the input of neural models.
However, the path explosion problem [28] may occur since
there could be numerous paths in one CFG, particularly in
real-world programs where the nested branches or loops are
common. Besides, not all paths are helpful for understanding

the semantics of vulnerability, and many of them could be
noises [29].

1) Taint Analysis: To overcome it, we employ static taint
analysis [30] for reducing the noisy information and mean-
while extracting data dependency information. Taint analysis
or taint tracking is a technique of information flow analysis by
tracking from a tainted source (e.g., untrusted data) through the
system to a specified sink (e.g., sensitive operators) [20], [31],
[32]. It consists of three important parts, namely source, sink
and sanitizer. Generally, a vulnerability may arise from the
source and occur at the sink. However, if there is a sanitizer
in the program that checks or cleanses the source before it
flows to the sink, then the vulnerability would not occur any
more.

Therefore, we adopt the methodology introduced by Yam-
aguchi et al. [33], [30] for conducting taint analysis, which
is applicable to the intra-procedural analysis at the source
code level. That is, we mark the parameters, global and local
variables as sources, and specify function calls as sinks. The
rationale behind regarding local variables as taint sources
is that these variables frequently serve as origins of system
inputs. For example, a local variable defined to read the
untruasted file. Then we traverse the dependency graph of the
source code, which starts from the sources and propagates
to the sinks to identify cases where attacker-controlled data
is used by a sensitive operation. In order to exclude prop-
erly sanitized cases, we utilize the symbol-specific syntax-
only sanitizer descriptions for UNSANITIZED traversal [30].
The traversal exclusively identifies attacker-controlled sources
under the fulfillment of the following conditions:

• There exists a path from the source statement to the sink
statement in the control flow graph, such that no node on
the path matches any of the sanitizer descriptions.

• A variable initially defined by the source and subse-
quently utilized by the sink successfully reaches the sink
through the control flow path. This signifies that the
variable remains unaltered by any node along the path.

Taking buffer overflows as an illustrative example, the moti-
vation of adopting sanitizer descriptions is that buffer overflow
instances often result from insufficiently validated length fields
supplied to copy operations. To elaborate, consider the context
of the Linux kernel code, where numerous buffer overflows
occur when size fields, retrieved by the function get user,
are directly passed as third arguments to memcpy without a
proper validation. This vulnerability pattern can be captured
by a traversal as follows:

ARG1
get user ◦ UNSANITIZED{Ts} ◦ ARG3

memcpy

This traversal targets third arguments for memcpy that are
directly influenced by the first arguments to get user and lack
proper validation, as indicated by nodes satisfying the traversal
Ts. A match traversal could involve relational expressions con-
taining the tracked variable s, e.g., x < buffer size or within
a call to the MIN macro. In addition, sanitizer descriptions
are also well suited for a wide range of vulnerabilities, such

1 8Source Sink

1 3 4 8Source Sink

2 3 4 8 9Source Sink

2 3 5Source Sink6

Control Flow Paths

Taint Flows

Top-3 Control Flow Paths

1 2 3 5 6 2 8 9

1 2 3 5 7 9

1 2 3 4 2 8 9

1 2 8 9

1 2 3 4 2 8 9

1 2 3 5 6 2 8 9

1 2 8 9

1 2 3 5 7 9

Fig. 3. An example for the process of path ranking.

as injection vulnerabilities, integer overflows, and missing
permission checks. This ensures that not all the data flows
are treated as taint flows, which helps us to extract more
useful dependency information. Formally, the process of taint
analysis yields multiple taint flows F , and each flow f ∈ F
consists of the tainted variables.

2) Path Ranking: As it should be, there could still exist
false taint flows since a static tool can not perfectly identify
all sanitizers. Nevertheless, we can utilize the results of taint
analysis to select control flow paths that have more taint flows.
The intuition is that one path could more likely contain vul-
nerable nodes (i.e., statements) if it is prone to be tainted. One
possible solution is to consider the overlaps of nodes regardless
of their inclusion relations or orders. However, it may wrongly
place one CFP to the high rank only because it contains
more nodes. Therefore, we propose a flow-aware matching
algorithm to rank the CFPs by their overlaps between taint
flows. Specifically, for each CFP pi, if all tainted identifiers
of one taint flow fj can be found in pi and they follow the
order of nodes of pi, then fj is a valid overlap and the number
increments. Note that we only count the situation of f ⊆ p
because it implies that the taint flow f comes from the CFP p,
and thus p is more vulnerable. We sort the T CFPs according
to their overlapping numbers in an descending order and keep
top-k CFPs, denoted as Pk ⊂ P, k ≤ T . Here k is a hyper-
parameter, and can be optimized based on the validation set
during the learning stage.

To better illustrate this process, we present an example in
Figure 3. In this example, we assume that the CFG has 4
simple paths and there are 4 taint flows obtained from the
step of taint analysis. Then, we count the numbers of taint
flows that are subsequences for the 4 CFPs p1 to p4. In this
example, we can observe that p1 has one taint flow (i.e., the
dotted arrow), p2 has three and so on. Finally, we select the
top-3 CFPs which are sorted by their numbers and discard the
4th one.

D. Model

We introduce the neural network for vulnerability local-
ization and description generation, which is presented in

Figure 4. The model consists of three components: the path
encoder, locator, and generator. We elaborate on each of these
components as follows.

1) Path Encoder: The path encoder is used to encode
the top-k control flow paths mentioned above. Specifically,
suppose we have the top-k CFPs Pk = {p1, p2, . . . , pk}
and pi = (v1, . . . , vni), we encode them individually in a
sequential manner. Here v1 and vn are the entry and exit node
of CFG respectively, and there are n nodes in total. Given one
node vj that corresponds to one statement sj = (t1, . . . , tb)
and t is one of the tokens in it, we first embed them into token
vectors via an embedding layer We, that is, xij =

⋃
t∈sj

We(t).
For simplicity, we use the notation of eij to represent the initial
vector of node vj in path pi, and calculate its value by max
pooling, that is, eij = max(xij).

Since the dependency information (i.e., control/data depen-
dency) has been integrated into Pk, we can automatically
capture it via sequential neural networks such as GRU [34]
or LSTM [35], which have been demonstrated effective in
learning semantics of dependencies [36], [7]. In this work, we
choose to use GRU because it is more efficient than LSTM
yet has comparable performance. The GRU works in a forward
way to encode the node embeddings by treating one path as
a node sequence. Furthermore, we adopt a backward GRU to
enhance the captured dependency information and concatenate
its hidden states with the forward ones, known as bidirectional
GRU (Bi-GRU). Let Q = [ei1, . . . , e

i
ni
] denote the vectors of

embedded nodes in the sequence, we encode the sequence into
hidden states H(Q) = [h11, . . . , h

i
ni
]. For each hit, t ∈ [1, ni],

we simply abbreviate the formula as:

hit = Bi-GRU(eit, h
i
t−1), (1)

and t corresponds to the time step during a single path
encoding.

After we obtain all the hidden states of the k CFPs, we
transit the nodes into vectors in the light of their respective
locations as well as path ranks, which we call it Rank-aware
Transition. In specific, assume that node vj exists in multiple
paths of P ′

k =
⋃ik

i=i0
pi, 1 ≤ i0 ≤ ik ≤ k, for each path pi,

the node vector h′ij is calculated by the following equations:

hij = map(j, hit),

h′
i
j = σ(Wk([h

i
j ; 1/r

i
j]) + bk),

(2)

where the function map is used to look up the hidden state
of the node in this path, and rij represents the path rank.
Wk, bk are the weight matrix and bias term respectively.
We concatenate the inverse rank as an additional feature to
the acquired hidden state, and project them to a new vector
space. This indicates that the importance of node vj from pi
will be largely weakened if it ranks poorly. Consequently,
the influence of noisy paths will be eliminated or reduced.
Then we perform max pooling on all the path-dependent node
vectors to get the final vector representation of this node as:

h′j = max(
⋃

i∈[i0,ik]

h′
i
j). (3)

These node vectors encode vulnerability-related dependency
information from both control flows and tainted data flows,
so as to be exploited for locating vulnerable statements and
generating vulnerability descriptions.

2) Vulnerability Locator: Now that we get the node vectors,
and recall that we have ensured all the nodes are distinct
in terms of statements, we can easily transform the problem
of vulnerability localization into node classification. In detail,
each node is classified into vulnerable or not via a multi-layer
perceptron (MLP) classifier to calculate the logits, namely
lj =MLP (h′j). Then the process of making predictions can
be expressed as:

ŷj =

{
1, sigmoid(lj) > δ
0, sigmoid(lj) ≤ δ

(4)

where δ is a threshold.
For training the locator, we use the binary cross-entropy

which is defined as:

L(Θ, ŷ, y) = −
X∑
i=1

N∑
j=1

(y
(i)
j ·log(ŷ(i)j)+(1−y(i)j)·log(1−ŷ(i)j)

Here X is the number of samples in the training set.
3) Description Generator: Similarly, we can generate de-

scriptive words that may include the symptom or reason for
the vulnerability by decoding the node vectors. Inspired by
code comment generation [37], our generator is based on GRU
because of its effectiveness in understanding code semantics.
When decoding the vulnerable code to generate the m-th word
at time m, the hidden state gm of the decoder is updated by:

gm = GRU(gm−1, dm−1), (5)

where dm−1 is the previous input vector. Next, an attention
module [38] is adopted, which can distinguish the nodes
for providing more useful information of a vulnerability. It
computes the context vector over the node vectors H(Q),
denoted as:

cm = Attention(gm, H(Q)) (6)

To jointly take into account past alignment information, we
apply the input-feeding strategy [39] which concatenates cm−1

with inputs dm−1. Then the probability for the next word dm
is

P (dm|d1, . . . , dm−1, F) = gen(dm−1, gm, cm−1), (7)

where gen is the generator function implemented by an MLP
layer along with softmax.

Training such a generator is to minimize the loss function:

L(θ) = −
X∑
i=1

M∑
j=1

logP (d
(i)
j |d(i)<j , F

(i)),

where θ is the trainable parameters.
After training, we choose the word with the highest proba-

bility as the generated word at each step. The process iterates
until the end of sentence word </s> and results in a complete
description for the vulnerability.

ℎ2
1

𝑣1

ℎ1
1 ℎ3

1 ℎ𝑛1
1

𝑣3… 𝑣𝑛1

𝑔1 𝑔2

<s> 𝑑1

Decoders

…

…

ℎ2
2

𝑣1

ℎ1
2 ℎ3

2 ℎ𝑛2
2

…𝑣3 𝑣𝑛2

…

ℎ2
𝑘

𝑣1

ℎ1
𝑘 ℎ3

𝑘 ℎ𝑛𝑘
𝑘

𝑣3… 𝑣𝑛𝑘

Rank-aware
Transition

…

𝑝1

𝑝2

𝑝𝑘

…

…

…

Node Vectors

Attention

𝑑1 𝑑2

…

…

…

𝑔𝑚

𝑑𝑀

</s>

… … …

𝑙1 𝑙2 … 𝑙𝑛

…

𝑦1 𝑦2 … 𝑦𝑁

Path Encoder

Description

Generator

Vulnerability

Locator

Fig. 4. The architecture of our model. Here the locator and generator only share the structure of the encoder, and they are trained independently to produce
two separate models.

IV. EVALUATION

A. Dataset

We build our dataset based on the widely-used BigVul [40],
which provides a large number of vulnerabilities (CVEs) re-
ported and/or validated by security experts from more than 300
different open-source C/C++ GitHub projects, along with their
vulnerability patches and descriptions. Notably, the dataset
contains a total of 11,823 vulnerable functions. However,
the original dataset has its flaws, such as meaningless code
changes (e.g., formatting changes) and incomplete functions.
Following LineVD [14], we exclude such instances to keep the
dataset consistent with it. We only kept the first two sentences
of the CVE descriptions in consideration of covering more
vulnerability-related information while removing lengthy and
irrelevant descriptions at the same time. Moreover, we normal-
ized the version numbers and file paths to “VERSION” and
“FILE” respectively, to further streamline the descriptions and
retain more informative words. As a result, our dataset consists
of 10,811 distinct vulnerable C/C++ functions along with their
patches and descriptions. These vulnerabilities originate from a
range of 293 projects, spanning across 71 vulnerability types,
thereby contributing to a diverse and comprehensive dataset
for our task.

We create ground-truth labels of vulnerable statements
based on the patches using heuristics following existing works
[12], [14]. Specifically, we treat removed lines or all lines
that are control or data dependent on the added lines as
vulnerable. We then randomly split the dataset into training,
validation, and test sets with a ratio of 8:1:1. Table I provides
some statistics about our dataset. #FuncToken and #DescWord
represent the number of tokens in the functions and words in
the descriptions respectively. #FuncLine and #FuncVline are
the numbers of lines and vulnerable lines in the functions.
#FuncUnqT. and #DescUnqW. are the respective vocab sizes.
We also compare the graph size between PDG and CFG for
example #PDGNode and #CFGNode represent the number of
nodes in the PDGs and original CFGs. On average, the size
of PDG in terms of edges is much larger than that of CFG,

TABLE I
THE STATISTICS OF OUR DATASET.

Source Avg. Max Graph Avg Max

#FuncToken 606 33,939 #PDGNode 158 11,859
#FuncLine 107 6,341 #PDGEdge 487 251,733
#FuncVLine 7 498 #PDGPath >1MM >40MM
#FuncUnqT. 191,692 #CFGNode 154 10,561
#DescWord 43 148 #CFGEdge 170 11,439
#DescUnqW. 10,986 #CFGPath 1602 66,593

which indicates that it is hard to capture precise dependency
information if we directly apply existing GNNs to it (as
mentioned in Section III-A).

B. Experimental Settings

We implement VulTeller with Pytorch and Joern, where
Joern is used to parse the C/C++ functions to construct CFGs,
as well as perform taint analysis. We set the vocabulary sizes
for functions and descriptions to 50K and 10K, respectively,
and used an embedding size and hidden state dimension of
256. To handle the oversized CFGs, we limited the number
of nodes in the CFPs to 200 and kept the top-10 CFPs,
since we noticed marginal improvements as the limit was
increased. For vulnerability localization, we set the threshold
δ to 0.1 according to the best F1-score on the validation set,
as is commonly done in existing work [14]. For description
generation, we employed a vanilla greedy search approach and
established a maximum description length of 50 to mitigate
lengthy and repetitive outcomes. We used a batch size of 32
and the Adam optimizer with a learning rate of 0.001 for
training the vulnerability locator and description generator,
with maximum epochs of 10 and 50 respectively, as they have
different convergence rates.

All experiments were conducted on an Ubuntu 18.04 server
with 48 cores of Intel(R) Xeon(R) Silver 4214 CPU @
2.20GHz, 256GB RAM, and a GTX3090 GPU with 24GB
memory.

C. Baselines

For vulnerability localization and description generation, we
respectively select the following baselines for comparison.

1) Vulnerability Localization: There are several DL-based
approaches that directly or indirectly (i.e., supervised / un-
supervised learning) predict the locations of vulnerabilities.
To investigate the effect of different learning manners, we
choose two typical models i.e., IVDetect [12] and LineVD
[14] respectively. We reproduce them from their publicly
available repositories with default settings and got similar yet
slightly lower results, thus we cite the stated ones to avoid the
bias. Additionally, since static analysis tools are commonly
used in practice [41], [42], we also include two open-source
tools, Cppcheck and Flawfinder. They can identify line-level
vulnerabilities in C/C++ code and have been evaluated for
vulnerability detection in previous studies. We acknowledge
the presence of more advanced tools such as Infer [43]
and CodeQL [44]. However, these tools necessitate access to
compiled code. This poses a challenge for our dataset, which
encompasses a multitude of projects and over 3,000 commits.
Consequently, the application of these tools to our extensive
dataset is not straightforward. We use default configurations
to scan the vulnerabilities in the functions.

2) Description Generation: After a thorough search of the
literature on vulnerability analysis, we did not find any existing
work that focuses on generating vulnerability descriptions.
Instead, we select some typical models such as Seq2Seq,
Transformer, CodeBert, G2S, and GraphCodeBert for com-
parison. We use them to generate descriptions based on the
source code, with the same hyperparameters as our model
unless otherwise specified.

• Seq2Seq. Seq2Seq is a classic neural encoder-decoder
model that has been used to generate code documents
including code comments [37], commit messages [45], etc.
It encodes the token sequence of one function into vectors
via Bi-LSTM and decodes it to text with an attentional
LSTM. We limit the max length of source code to 400 for
a high coverage.

• Transformer. Transformer follows an encoder-decoder
structure but uses self-attention mechanisms to process
sequences of data (i.e., token sequence) and has also been
widely adopted in code or its comment generation [46], [47].
Following existing work, we use 6 layers and 8 heads in the
Transformer.

• G2S. G2S employs an encoder-based on GGNN and a
RNN decoder, which shows strong performance in NMT.
Similarly, there exist GNN-based models for code comment
generation such as GCN and GAT [48], [49]. In order to
apply G2S in vulnerability description generation, we parse
the source code into PDG and use LSTM as the decoder.
We set the propagation step as 3 which yields a fairly better
result.

• CodeBert. CodeBert is a bimodal pre-trained model based
on Transformer that captures the semantic connection be-
tween natural language and programming language, and

TABLE II
THE EFFECTIVENESS OF DIFFERENT APPROACHES FOR VULNERABILITY

LOCALIZATION.

Methods Precision Recall F1-score

Cppcheck 11.9 2.3 3.6
FlawFinder 3.9 2.8 2.2

IVDetect 23.8 14.0 17.6
LineVD 27.1 53.3 36.0

VulTeller 38.9 55.6 45.8

produces general-purpose representations to support gener-
ation tasks [50]. We keep the dimensions of embeddings
and hidden states as default since there is no way to easily
change the hyper-parameters of pre-trained model.

• GraphCodeBert. GraphCodeBert is a more recent pre-
trained model for programming language based on Trans-
former that introduces a data flow graph-guided masked
attention function to incorporate the code structure [51]. We
keep the settings as same as CodeBert.

D. Evaluation Metrics

We evaluate the performance of different approaches on the
two tasks with different metrics. For vulnerability localization,
since it can be treated as a binary classification problem,
we adopt Precision (abbr. P), Recall (abbr. R) and F1-score
(abbr. F1) to measure the accuracy of each approach in
locating the vulnerable statements. For description generation,
we use smoothed BLEU-4 [52] and ROUGE-L [53] to assess
the textual similarity between the reference descriptions and
the generated ones, which are also commonly used in code
document generation tasks. For these metrics, we present
their values in percentage and a higher value means better
performance.

E. Results

We investigate the effectiveness of all aforementioned ap-
proaches by answering the following three research questions.

RQ1. How does our approach perform on vulnerability
localization compared to the state-of-the-art?

Table II presents the experimental results of all approaches.
First, we can see that static analysis-based tools perform badly
in terms of F1-score. Not only do they report a large fraction
of false positives, but also they miss many true positives. For
example, the precision of Cppcheck is 11.9%, which means
that nearly 90% of the reported statements are not vulnerable.
And it does not report any vulnerabilities in some cases,
leading to a low recall value. FlawFinder achieves a slightly
higher recall, yet the precision is even lower. Intuitively,
this is not surprising in that static tools solely depend on
predefined rules/patterns, whereas vulnerabilities are naturally
complex and varied. To further figure out the reason for
the high false positive/negative rate, we manually inspect a
subset of the warnings. We find that they tend to report
potential vulnerabilities based on the occurrence of specific

TABLE III
THE EFFECTIVENESS OF DIFFERENT APPROACHES FOR DESCRIPTION

GENERATION

Groups Models BLEU ROUGE-L

Sequence-based
Seq2seq 42.1 54.2
Transformer 41.8 54.1
CodeBert 43.4 57.0

Graph-based
G2S 37.2 50.8
GraphCodeBert 43.9 57.6

VulTeller 46.3 58.6

API calls. For instance, FlawFinder reports a buffer overflow
vulnerability where the “fgetc()” is called, even though the
boundary has been checked with another API. Conversely, in
most cases when it misses a real vulnerability, there are no
such APIs and it simply reports the result of no hits found.

It is obvious that neural network-based approaches achieve
much better performance. In particular, the precision of IVDe-
tect is 23.8%, nearly twice the precision of Cppcheck. More-
over, the recall values of both neural models far outweigh those
of static tools. The significant improvement may largely at-
tribute to the capability of neural models for learning semantic
patterns across the structure of PDGs. By comparing IVDetect
and LineVD, we can observe that their recall values also vary a
lot. Since they have the same source code representation (i.e.,
PDG) and similar GNNs, the most possible reason is that an
end-to-end model captures more statement-level vulnerability
information as LineVD does. While IVDetect relies on the
inner features of the learned model and thus may not explicitly
contribute to locating the vulnerable statements.

Our approach improves the precision of all baselines by a
large margin and meanwhile obtains an even higher recall.
This demonstrates that more precise dependency information
is really beneficial to exclude false positives by capturing
control/data dependencies from control flow paths and re-
ducing noises with taint analysis. Nonetheless, the overall
performance of all approaches is not high enough, indicating
that automated vulnerability localization is challenging. In
practice, one can raise the threshold δ to further reduce false
positives, and refer to the generated description to more easily
confirm a vulnerability.

RQ2. How effective is our proposed approach for vulner-
ability description generation?

Initially, we could include the generated descriptions of
static tools for comparison. But given the inconsistent specifi-
cations between the tools and CVEs, and the high false positive
rate, the performance can be quite poor (e.g., FlawFinder got
BLEU=5.2% and ROUGE-L=29.9%). Therefore, we focus on
learning-based approaches here.

As shown in Table III, most of the models yield good
results in terms of both metrics. For instance, Seq2seq model
obtains a BLEU score of 42.1%, which is competitive with the
standard of machine translation. This means that such neu-
ral networks are indeed feasible for generating vulnerability

descriptions. However, due to the diversity of vulnerabilities
and details, improving the quality of generated descriptions
is not trivial. For example, Transformer performs worse than
Seq2seq (e.g., 0.3% lower in terms of BLEU) despite its self-
attention mechanism. In fact, not all the tokens necessarily
have dependencies inside a program, hence considering all
the relations of the tokens may cause confusion. By contrast,
CodeBert improves them significantly since it utilizes the prior
knowledge learned from a large code corpus, which helps to
focus on real dependencies that are related to vulnerability
semantics.

G2S is expected to capture useful dependencies over the
PDGs of a given vulnerable function. However, the BLEU
score as well as the ROUGE-L score is substantially lower than
sequence-based ones, for example, Transformer outperforms it
by 4.6% in terms of BLEU. This may blame to the large size
of PDG and the bottleneck of existing GNNs in capturing
long-range dependency information as previously discussed.
GraphCodeBert shows a marked advantage over G2S and
achieves the best performance among all the baselines, even
though it is only based on BERT and data flow graph without
GNNs. In specific, the score of ROUGE-L is 57.6%, which
improves G2S and CodeBert by 6.8% and 0.6% respectively.
We can deduce that such a model focuses more on the relation
of ”where-the-value-comes-from” between variables and thus
excels in capturing data dependencies compared to others.

Recently, ChatGPT has showed a great capability of text
generation, and one would like to know how it performs
when generating vulnerability descriptions. Through few-shot
learning [54], we got an BLEU score of 28.4% and ROUGE-
L score of 48.6%. Even if there are ways to improve, we do
not recommend relying on the online ChatGPT to analysis
vulnerabilities (especially in industrial projects) due to the
potential privacy and security issues.

VulTeller significantly outperforms all the baselines. Specif-
ically, the BLEU and ROUGE-L scores exceed the best one
(i.e., GraphCodeBert) by 2.4% and 1.0% respectively. It can
be concluded that with precise control and data dependen-
cies from the control flows along with tainted data flows,
our model learns more accurate semantics of vulnerabilities,
which actually helps in generating vulnerability descriptions.
Besides, these results also pose a further need for more precise
representations to understand the vulnerability.

RQ3. To what extent do the components of our approach
contribute to the effectiveness of both tasks?

In this RQ, we want to know how the CFG simplifica-
tion, taint analysis and path ranking influence the overall
performance. We conduct the ablation study by removing or
replacing each component once at a time, leaving everything
else the same. The results are presented in Table IV.

First, we extract CFPs from the original CFG generated
by Joern, and feed them into our two models (i.e., w/o CFG
Simp.). We can observe that the performance on both tasks
drops by 0.9% to 1.5%. This is because there are many redun-
dant nodes and edges in the original CFG, where several nodes

TABLE IV
THE EFFECTS OF DIFFERENT COMPONENTS IN VULTELLER FOR THE TWO

TASKS.

Localization Generation

Strategy P R F1 BLEU ROUGE-L

VulTeller 38.9 55.6 45.8 46.3 58.6
w/o CFG Simp. 37.6 53.9 44.3 45.2 57.7
w/o taints 36.1 50.5 42.2 42.3 54.4
w/o ranks 38.7 53.2 44.8 45.6 58.1

belong to one single statement. Such redundancy information
has a negative impact on capturing the natural dependency.
After simplification, the average numbers of nodes and edges
are 52 and 69, which are approximately twice smaller as the
original ones. Hence, the size of the graph can indeed affect
the performance of our model.

Next, we investigate the effect of CFP selection from two
perspectives. One is totally abandoning taint analysis and using
random K paths instead (i.e., w/o taints). As the table shows,
the performance in terms of all metrics decreases significantly.
In particular, the F1-score for vulnerability localization is 3.6%
lower than VulTeller, and similarly the BLEU or ROUGE-L
score. Although the control and data dependency can also be
captured through our model, it misses vulnerable paths to a
large extent without taint analysis. Moreover, such a random
selection can bring much noise that weakens the capability
of our model to focus on more important ones. Another is to
keep the filtered CFPs but ignore their ranks when encoding
these paths (i.e., w/o ranks). Compared to the former, it
achieves a notable improvement, especially in locating vulner-
able statements. Nonetheless, in comparison to the utilization
of path ranking (i.e., VulTeller), the improvement achieved in
description generation is relatively modest. We conjecture that
the attention mechanism can partially counteract the weakness
of unordered paths.

In summary, the size of CFG, taint analysis and path ranking
all have a positive impact on the performance of our approach.
When combining them together, we obtain the best results on
two tasks.

F. Human Evaluation

Previously, we use the automatic metrics to calculate
the similarity between generated descriptions and references.
However, such metrics are not perfect for measuring seman-
tic similarity because they are based on statistical analysis.
Therefore, we perform a human evaluation for an in-depth
measurement.

We invite 6 human evaluators with 2-5 years of software
security experience to assess the quality of vulnerability
descriptions generated by different approaches. Specifically,
we compare our approach VulTeller and two representative
baselines including Seq2seq and GraphCodeBert from each
group. We choose Seq2seq instead of CodeBert because Code-
Bert exhibits close performance with GraphCodeBert, which
makes it not distinguishable. We randomly select 100 function-

TABLE V
THE SCORE DISTRIBUTION OF GENERATED DESCRIPTIONS

Score 1 2 3 4 5 6 7 Avg
Seq2seq 16 18 17 16 11 10 12 3.66
GraphCodeBert 12 14 12 22 10 19 11 4.05
VulTeller 12 11 10 15 16 14 22 4.42

description pairs from the testing set for evaluation, where the
function contains the vulnerability and the description serves
as a reference. Then we fetch generated ones of the three
approaches and evenly divide them into two groups. Each
group is assigned to three different evaluators since the redun-
dancy can help obtain more consistent results. The generated
descriptions are randomly presented, thus an evaluator will
not be aware of which approach the description comes from.
The evaluators can give a score between 1 to 7 to measure
the semantic similarity between the generated description and
the reference, where 1 means “Not Similar At All” and 7
means “Highly Similar/Identical”. The higher score means
closer quality of generated description to the reference. For
each generated description, we get three scores from evaluators
and choose the median value as the final score.

The detailed scores of generated descriptions are shown
in Table V. We can see that our approach achieves the
best results and improves the average (Avg) score from 3.66
(Seq2seq), 4.05 (GraphCodeBert) to 4.42. Specifically, among
the randomly selected 100 samples, our approach can gen-
erate 22 highly similar or even identical descriptions with
the reference ones (score = 7), 36 good descriptions (score
≥ 6). Our approach also receives the smallest number of
negative results (score ≤ 3). Based on the 100 final scores
for each approach of Seq2Seq, GraphCodeBert and VulTeller,
we conduct Wilcoxon signed-rank tests [55]. Comparing our
approach with two baselines, the p-values of Wilcoxon signed-
rank tests at 95% confidence level are 2.5e-05 and 0.028
respectively, showing that the improvements achieved by our
approach are statistically significant. To sum up, the results
of human evaluation confirm the effectiveness of the proposed
approach.

G. Case Study

We present two cases of vulnerable functions with their
references and generated descriptions to discuss the superiority
and limitation of our model for description generation, which
is shown in Table VI. We add line comments “/*Vulnerable
statement*/” to point out the location. In the first case, the
function from MongoDB client aims to save history files on
the local storage. However, it simply opens a specified file
(i.e., “fopen()”) and writes data to it without checking the
permissions (i.e., “fprintf()”). This may lead to information
leakage when the data has sensitive content. Therefore, the
developer fixes it by adding conditional compilation state-
ments for example “#if” and “#else” around the vulnerable
statement. Among the generated descriptions of baselines, the
most similar key phrase is “writing data to a temporary file”.
But it neither presents what the vulnerability is nor explains

TABLE VI
TWO CASES OF VULNERABLE C/C++ FUNCTIONS WITH THE DESCRIPTIONS. THE YELLOW HIGHLIGHTS ARE THE IMPORTANT INFORMATION FOR THE

VULNERABILITY, WHILE PINK AND RED HIGHLIGHTS INDICATE THE CLOSE OR IDENTICAL MEANING TO THE REFERENCE RESPECTIVELY.

CASE 1: CVE-2016-6494 CASE 2: CVE-2015-6817
i n t l i n e n o i s e H i s t o r y S a v e (c o n s t c h a r * f i l e n a m e)
{

/ * Vune rab l e s t a t e m e n t * /
FILE* fp = fopen (f i l e n a m e , ” wt ”) ;
i f (fp == NULL) {

r e t u r n −1;
}
f o r (i n t j = 0 ; j < h i s t o r y L e n ; ++ j) {

i f (h i s t o r y [j] [0] != ’\0 ’) {
f p r i n t f (fp , ”%s\n ” , h i s t o r y [j]) ;

}
}
f c l o s e (fp) ;
r e t u r n 0 ;

}

s t a t i c vo id s t a r t a u t h r e q u e s t (PgSocke t * c l i e n t
, c o n s t c h a r * username)

{
i n t r e s ;
PktBuf * buf ;
/ * Vune rab l e s t a t e m e n t * /
c l i e n t −>a u t h u s e r = c l i e n t −>db−>a u t h u s e r ;
c l i e n t −>poo l = g e t p o o l (c l i e n t −>db , c l i e n t

−>db−>a u t h u s e r) ;
i f (! f i n d s e r v e r (c l i e n t)) {

c l i e n t −>w a i t f o r u s e r c o n n = t r u e ;
r e t u r n ;

}
. . . (1 8 l i n e s more)

}

Reference: The client in MongoDB uses world-readable permissions
on .dbshell history files, which might allow local users to obtain sen-
sitive information by reading these files.

Reference: PgBouncer before VERIOSN, when configured with
auth user, allows remote attackers to gain login access as auth user
via an unknown username.

Seq2seq: Keepalived VERSION, did n’t check for pathnames with
symlinks when writing data to a temporary file upon a call to Printdata.

Seq2seq: The filesystem implementation in the FileInfo component
does not ensure that pix fmt is used for a remote advertisement’s
application.

Transformer: FILE in python before VERSION, has a length value
that only might allow an attacker to dereference during the client ’s
unsigned long key.

Transformer: The in the linux the block devices in the linux kernel
before VERSION, allows remote attackers to cause a denial of service.

CodeBert: Keepalived VERSION, did n’t check for pathnames with
symlinks when writing data to a temporary file upon a call to PrintData
or PrintStats.

CodeBert: Unspecified vulnerability in libpng before VERSION,
as used in Android VERSION, before VERSION, before VER-
SION...(twice more)

G2S: An issue was discovered in php before VERSION. There is an
uninitialized read in files.

G2S: An issue was discovered in libvncserver before VERSION, FILE
has a null pointer dereference.

GraphCodeBert: Integer overflow in FILE in Git, allows remote
attackers to cause a denial of service (application crash) via a crafted
file.

GraphCodeBert: PgBouncer before VERSION, allows remote attack-
ers to cause a denial of service (NULL pointer dereference and crash
) via unspecified vectors.

VulTeller: The FILE before VERSION does not verify that use of
the permissions on history files, allows local guest to read sensitive
information by reading these files.

VulTeller: A crafted authentication, which can cause a denial of service
(connection to crash) by sending a connection to client.

how it can be exploited. By contrast, VulTeller successfully
generates the symptom and cause, which goes a long way
towards understanding and fixing it. The reason behind this
is that our approach learns precise dependencies and treats
the missing control dependency (i.e., the condition evaluation)
along with data dependency (i.e., from source “FILE *p” to
sink “fprintf(fp, ...)”) as vulnerable.

Despite some progress, generating high-quality descriptions
automatically remains a great challenge, and our approach
has its own limitations. For example, in Case 2, almost all
the methods failed to generate important information about
the vulnerability related to malicious access control. Graph-
CodeBert correctly identified that the vulnerability originated
from PgBouncer, but reported an unrelated symptom (i.e.,
“denial of service”). Similarly, our approach predicted the
same symptom, though it did indicate the presence of a crafted
authentication. This bias may have stemmed from the absence
of external dependency information, such as the definition
of the PgSocket class and its members. Additionally, our
approach is insensitive to the value of a variable, which could
lead to incorrect predictions. These findings motivate us to
consider global dependency and dynamic information in our

future work and also highlight the need for more research to
address this challenging problem.

V. THREATS TO VALIDITY

Internal Validity. The internal threat is that the quality of
the functions along with the ground-truths (i.e., locations and
descriptions) may affect the effectiveness of our approach. In
particular, we treat lines that have control/data dependencies
on the added lines as vulnerable, which may not always be
the truth. As introduced, this practice is borrowed from the
baselines and thus the threat is minimized. Moreover, the
original description of a vulnerability may contain meaningless
words such as version numbers, and miss some details like the
cause and impact. To mitigate it, we have applied some rules
to normalize the versions and file paths. We will consider more
accurate heuristics in the future.

External Validity. We only collected vulnerabilities from
C/C++ projects to construct the dataset. It remains unknown
whether our approach will perform well in other programming
languages such as PHP and Python. However, it is widely
known that C/C++ projects produce more vulnerabilities be-
cause of their freedom on accessing system memory and foun-
dation for other programming languages. We will extend the

diversity of our dataset in future. Besides, some of the base-
lines may not fit well on the tasks. Static analysis tools may
not achieve optimal performance in vulnerability localization
since they are limited to identifying vulnerable lines within
individual functions. We will explore automatic compilation
techniques to support the evaluation of more advanced tools.
For description generation, G2S is implemented based on the
parsed PDG instead of AST-based graph, which differs from it
in code summarization. But since it is important to capture de-
pendency information as prior work demonstrated, we believe
such a practice is reasonable. CodeBert and GraphCodeBert
are pre-trained on programming languages excluding C/C++,
which is not perfect for our dataset. To reduce the threat, we
fine-tune them on the dataset for better performance. We will
investigate other large pre-trained models to improve them in
the future.

VI. RELATED WORK

A. DL-based Vulnerability Discovery

Many studies have proposed deep learning-based ap-
proaches for discovering vulnerabilities from the source code,
including the granularity of function level and statement level.
At the function level (aka vulnerability detection), various
types of neural networks have been adopted to detect if a given
function is vulnerable by automatically learning vulnerability
features [7], [8], [9]. Though effective, these work is limited to
only notify developers the existence of vulnerability, without
the locations that are crucial for fixing it.

Therefore, recent work focuses more on the statement-
level vulnerability detection (i.e., vulnerability localization),
most of them fall into unsupervised learning. For example,
VulDeeLocator [11] extends a Bi-LSTM detector with an inner
multiply layer and predicts the vulnerable statements with the
output of the inner layer. Similarly, IVDetect [12] and LineVul
[56] train a vulnerability detector and then extract either sub-
graphs or attention weights from the trained model for locating
vulnerable statements. Due to the inconsistency between inner
features and the locations, the subsequent studies propose to
pinpoint vulnerable statements in a supervised manner. VEL-
VET [13] learns to rank vulnerable statements by combining
graph-based and sequence-based neural networks. LineVD
[14] formulates statement-level vulnerability detection as a
node classification task and leverages graph neural networks
with a transformer-based model over PDG for end-to-end
learning.

Compared to the above work, our VulTeller is a fully
supervised neural model for vulnerability localization and
focuses on control flows and taint flows to capture more
precise dependencies.

B. Code Document Generation

Inspired by the success of neural machine translation,
researchers also widely explore encoder-decoder neural net-
works to generate documents for code snippets, including but
not limited to source code summarization, [37], [47], [57],
code commit generation [45], [58]. For example, Ahmad et

al. [47] explores the Transformer model that uses a self-
attention mechanism and is attached with relative position
representations and copy attention to generate code comments.
Jiang et al. [45] adopt the standard attentional sequence-to-
sequence model that encodes the code changes and generates
their commit messages. Apart from these tasks, Liu et al. [59]
propose a sequence-to-sequence model with copy mechanism
and reinforcement learning to automatically generate pull
request descriptions based on the commit messages and the
added source code comments in the pull-requests. Hu et al.
[60] exploit the Transformer to generate user notice for smart
contract functions, so as to help end-users better understand
the smart contract and be aware of the financial risks.

Different from the ones outline above, we make the first step
towards automated vulnerability description generation, which
provides additional assistance for developers in understanding
the facts and potential hazards of vulnerabilities.

VII. CONCLUSION

This paper introduces a novel approach to automatically lo-
calize and generate descriptions for vulnerabilities using deep
learning. To address the challenge of capturing vulnerability
semantics, we propose VulTeller that converts the control flow
graph into control flow paths and incorporating taint analysis
to refine control dependencies and integrate data dependen-
cies, thereby avoiding the bottleneck of GNNs. We design
neural models based on these techniques to automatically
learn precise semantics for both tasks. We conduct extensive
experiments to evaluate the effectiveness of our approach,
and the results demonstrate the superior performance of our
models in both tasks compared to baseline models. Despite
these promising results, there is still space for improvement
before the approach can be applied in real-world scenarios.

Our work can be considered as an initial step towards
automated vulnerability diagnosis. In future, we expect re-
searchers will explore more advanced strategies to improve the
accuracy of both tasks. And we may also conduct studies to
investigate more information need of developers on diagnosing
vulnerabilities. The source code and experimental data are
available at https://github.com/zhangj111/VulTeller.

ACKNOWLEDGMENT

This work is supported by Nanyang Technological Uni-
versity (NTU)-DESAY SV Research Program under Grant
2018-0980. It is also supported by the National Research
Foundation, Singapore, and the Cyber Security Agency un-
der its National Cybersecurity R&D Programme (NCRP25-
P04-TAICeN) and the NRF Investigatorship NRF-NRFI06-
2020-0001. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the
author(s) and do not reflect the views of National Research
Foundation, Singapore and Cyber Security Agency of Singa-
pore. This work has also received partial support from the
National Key Research and Development Program of China
(No. 2022YFB4502003) and the National Natural Science
Foundation of China (No. 62072017).

REFERENCES

[1] M. Shahzad, M. Z. Shafiq, and A. X. Liu, “A large scale exploratory
analysis of software vulnerability life cycles,” in 2012 34th International
Conference on Software Engineering (ICSE). IEEE, 2012, pp. 771–781.

[2] D. Mu, A. Cuevas, L. Yang, H. Hu, X. Xing, B. Mao, and G. Wang,
“Understanding the reproducibility of crowd-reported security vulnera-
bilities,” in 27th USENIX Security Symposium (USENIX Security 18),
2018, pp. 919–936.

[3] M. Fu, C. Tantithamthavorn, T. Le, V. Nguyen, and D. Phung, “Vulre-
pair: a t5-based automated software vulnerability repair,” in Proceedings
of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2022, pp. 935–
947.

[4] J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and H. R. Lipford, “Ques-
tions developers ask while diagnosing potential security vulnerabilities
with static analysis,” in Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, 2015, pp. 248–259.

[5] R. Croft, D. Newlands, Z. Chen, and M. A. Babar, “An empirical study of
rule-based and learning-based approaches for static application security
testing,” in Proceedings of the 15th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM), 2021, pp.
1–12.

[6] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in 2013 35th
International Conference on Software Engineering (ICSE). IEEE, 2013,
pp. 672–681.

[7] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
“Vuldeepecker: A deep learning-based system for vulnerability de-
tection,” in 25th Annual Network and Distributed System Security
Symposium, NDSS 2018, San Diego, California, USA, February 18-21,
2018, 2018.

[8] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vul-
nerability identification by learning comprehensive program semantics
via graph neural networks,” Advances in neural information processing
systems, vol. 32, 2019.

[9] Y. Wu, D. Zou, S. Dou, W. Yang, D. Xu, and H. Jin, “Vulcnn: An image-
inspired scalable vulnerability detection system,” in 44th IEEE/ACM
44th International Conference on Software Engineering, ICSE 2022,
Pittsburgh, PA, USA, May 25-27, 2022. ACM, 2022, pp. 2365–2376.

[10] J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and H. R. Lipford,
“How developers diagnose potential security vulnerabilities with a static
analysis tool,” IEEE Transactions on Software Engineering, vol. 45,
no. 9, pp. 877–897, 2018.

[11] Z. Li, D. Zou, S. Xu, Z. Chen, Y. Zhu, and H. Jin, “Vuldeelocator: a deep
learning-based fine-grained vulnerability detector,” IEEE Transactions
on Dependable and Secure Computing, 2021.

[12] Y. Li, S. Wang, and T. N. Nguyen, “Vulnerability detection with fine-
grained interpretations,” in Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2021, pp. 292–303.

[13] Y. Ding, S. Suneja, Y. Zheng, J. Laredo, A. Morari, G. E. Kaiser, and
B. Ray, “VELVET: a novel ensemble learning approach to automatically
locate vulnerable statements,” in IEEE International Conference on Soft-
ware Analysis, Evolution and Reengineering, SANER 2022, Honolulu,
HI, USA, March 15-18, 2022. IEEE, 2022, pp. 959–970.

[14] D. Hin, A. Kan, H. Chen, and M. A. Babar, “Linevd: Statement-level
vulnerability detection using graph neural networks,” in 19th IEEE/ACM
International Conference on Mining Software Repositories, MSR 2022,
Pittsburgh, PA, USA, May 23-24, 2022. ACM, 2022, pp. 596–607.

[15] U. Alon and E. Yahav, “On the bottleneck of graph neural networks
and its practical implications,” in International Conference on Learning
Representations, 2020.

[16] S. Liu, X. Xie, J. Siow, L. Ma, G. Meng, and Y. Liu, “Graphsearchnet:
Enhancing gnns via capturing global dependencies for semantic code
search,” IEEE Transactions on Software Engineering, 2023.

[17] J. Zhang, X. Wang, H. Zhang, H. Sun, X. Liu, C. Hu, and Y. Liu, “De-
tecting condition-related bugs with control flow graph neural network,”
in Proceedings of the 32nd ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2023, pp. 1370–1382.

[18] H. Assal and S. Chiasson, “’think secure from the beginning’ a survey
with software developers,” in Proceedings of the 2019 CHI conference
on human factors in computing systems, 2019, pp. 1–13.

[19] D. Votipka, K. R. Fulton, J. Parker, M. Hou, M. L. Mazurek, and
M. Hicks, “Understanding security mistakes developers make: Quali-
tative analysis from build it, break it, fix it,” in 29th USENIX Security
Symposium (USENIX Security 20), 2020, pp. 109–126.

[20] J. Newsome and D. X. Song, “Dynamic taint analysis for automatic
detection, analysis, and signaturegeneration of exploits on commodity
software.” in NDSS, vol. 5. Citeseer, 2005, pp. 3–4.

[21] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural net-
works,” IEEE transactions on Signal Processing, vol. 45, no. 11, pp.
2673–2681, 1997.

[22] K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk, and
Y. Bengio, “Learning phrase representations using rnn encoder-decoder
for statistical machine translation,” in Conference on Empirical Methods
in Natural Language Processing (EMNLP 2014), 2014.

[23] J. K. Siow, S. Liu, X. Xie, G. Meng, and Y. Liu, “Learning program
semantics with code representations: An empirical study,” in 2022
IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 2022, pp. 554–565.

[24] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings, 2017.

[25] Y. Li, D. Tarlow, M. Brockschmidt, and R. S. Zemel, “Gated graph
sequence neural networks,” in 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2016.

[26] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in International Conference on
Learning Representations, 2018.

[27] Joern, “Joern: The bug hunter’s workbench,” https://joern.io/.
[28] C. Flanagan and J. B. Saxe, “Avoiding exponential explosion: Gen-

erating compact verification conditions,” in Proceedings of the 28th
ACM SIGPLAN-SIGACT symposium on Principles of Programming
Languages, 2001, pp. 193–205.

[29] J. Zhang, X. Wang, H. Zhang, H. Sun, Y. Pu, and X. Liu, “Learning to
handle exceptions,” in Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, 2020, pp. 29–41.

[30] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and discover-
ing vulnerabilities with code property graphs,” in 2014 IEEE Symposium
on Security and Privacy. IEEE, 2014, pp. 590–604.

[31] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to
know about dynamic taint analysis and forward symbolic execution (but
might have been afraid to ask),” in 2010 IEEE symposium on Security
and privacy. IEEE, 2010, pp. 317–331.

[32] Y. W. Chow, M. Schäfer, and M. Pradel, “Beware of the unexpected:
Bimodal taint analysis,” arXiv preprint arXiv:2301.10545, 2023.

[33] F. Yamaguchi, C. Wressnegger, H. Gascon, and K. Rieck, “Chucky:
Exposing missing checks in source code for vulnerability discovery,”
in Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, 2013, pp. 499–510.

[34] K. Cho, B. van Merriënboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder–decoder approaches,”
in 8th Workshop on Syntax, Semantics and Structure in Statistical
Translation, SSST 2014. Association for Computational Linguistics
(ACL), 2014, pp. 103–111.

[35] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[36] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A novel
neural source code representation based on abstract syntax tree,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 783–794.

[37] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment genera-
tion,” in Proceedings of the 26th conference on program comprehension,
2018, pp. 200–210.

[38] D. Bahdanau, K. H. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in 3rd International Conference
on Learning Representations, ICLR 2015, 2015.

[39] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” in Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing,
2015, pp. 1412–1421.

[40] J. Fan, Y. Li, S. Wang, and T. N. Nguyen, “Ac/c++ code vulnerability
dataset with code changes and cve summaries,” in Proceedings of the

17th International Conference on Mining Software Repositories, 2020,
pp. 508–512.

[41] S. Lipp, S. Banescu, and A. Pretschner, “An empirical study on the
effectiveness of static c code analyzers for vulnerability detection,” in
Proceedings of the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2022, pp. 544–555.

[42] H. Liu, S. Chen, R. Feng, C. Liu, K. Li, Z. Xu, L. Nie, Y. Liu, and
Y. Chen, “A comprehensive study on quality assurance tools for java,”
in Proceedings of the 32nd ACM SIGSOFT International Symposium on
Software Testing and Analysis, ser. ISSTA 2023, 2023, p. 285–297.

[43] Facebook, “Infer: A tool to detect bugs in java and c/c++/objective-c
code,” https://fbinfer.com/.

[44] G. S. Lab, “Codeql,” https://securitylab.github.com/tools/codeql.
[45] S. Jiang, A. Armaly, and C. McMillan, “Automatically generating

commit messages from diffs using neural machine translation,” in
2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2017, pp. 135–146.

[46] A. Svyatkovskiy, S. K. Deng, S. Fu, and N. Sundaresan, “Intellicode
compose: Code generation using transformer,” in Proceedings of the
28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2020, pp.
1433–1443.

[47] W. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “A transformer-
based approach for source code summarization,” in Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics,
2020, pp. 4998–5007.

[48] A. LeClair, S. Haque, L. Wu, and C. McMillan, “Improved code
summarization via a graph neural network,” in Proceedings of the 28th
international conference on program comprehension, 2020, pp. 184–195.

[49] Y. Wang, Y. Dong, X. Lu, and A. Zhou, “Gypsum: learning hybrid
representations for code summarization,” in Proceedings of the 30th
IEEE/ACM International Conference on Program Comprehension, 2022,
pp. 12–23.

[50] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming
and natural languages,” in Findings of the Association for Computational
Linguistics: EMNLP 2020, 2020, pp. 1536–1547.

[51] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan,
A. Svyatkovskiy, S. Fu, M. Tufano, S. K. Deng, C. B. Clement,
D. Drain, N. Sundaresan, J. Yin, D. Jiang, and M. Zhou, “Graphcodebert:
Pre-training code representations with data flow,” in 9th International
Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021, 2021.

[52] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of the 40th
annual meeting of the Association for Computational Linguistics, 2002,
pp. 311–318.

[53] C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,”
in Text summarization branches out, 2004, pp. 74–81.

[54] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[55] F. Wilcoxon, S. Katti, and R. A. Wilcox, “Critical values and probability
levels for the wilcoxon rank sum test and the wilcoxon signed rank test,”
Selected tables in mathematical statistics, vol. 1, pp. 171–259, 1970.

[56] M. Fu and C. Tantithamthavorn, “Linevul: a transformer-based line-
level vulnerability prediction,” in Proceedings of the 19th International
Conference on Mining Software Repositories, 2022, pp. 608–620.

[57] J. Zhang, X. Wang, H. Zhang, H. Sun, and X. Liu, “Retrieval-based
neural source code summarization,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, 2020, pp.
1385–1397.

[58] Z. Liu, X. Xia, A. E. Hassan, D. Lo, Z. Xing, and X. Wang, “Neural-
machine-translation-based commit message generation: how far are we?”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, 2018, pp. 373–384.

[59] Z. Liu, X. Xia, C. Treude, D. Lo, and S. Li, “Automatic generation
of pull request descriptions,” in 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2019,
pp. 176–188.

[60] X. Hu, Z. Gao, X. Xia, D. Lo, and X. Yang, “Automating user notice
generation for smart contract functions,” in 2021 36th IEEE/ACM

International Conference on Automated Software Engineering (ASE).
IEEE, 2021, pp. 5–17.

