
Learning to Locate and Describe Vulnerabilities

Jian Zhang†, Shangqing Liu†∗, Xu Wang‡§, Tianlin Li†, and Yang Liu†
†Nanyang Technological University, Singapore

‡SKLSDE Lab, Beihang University, Beijing, China

{jian zhang, liu.shangqing, tianlin001, yangliu}@ntu.edu.sg, xuwang@buaa.edu.cn

Abstract—Automatically discovering software vulnerabilities is
a long-standing pursuit for software developers and security
analysts. Since detection tools usually provide limited information
for vulnerability inspection, recent work turns the attention to
identify fine-grained vulnerabilities, i.e., vulnerable statements.
However, existing work for vulnerability localization struggles to
capture long-range and integral dependency information due to
the bottleneck of Graph Neural Networks (GNNs). Moreover, lit-
tle research has been done to help developers understand detected
vulnerabilities, leaving vulnerability diagnosis a challenging task.
In this paper, we propose VulTeller, a deep learning-based
approach that can automatically locate vulnerable statements in
a function and more importantly, can describe the vulnerability.
Our approach focuses on extracting precise control and data
dependencies in the code, achieved through modeling control
flow paths and employing taint analysis. We design a novel neural
model that encodes the control flows and taint flows which reside
in the control flow paths, and decodes them via node classification
and an attentional decoder for the two tasks respectively. We
conduct extensive experiments with real-world vulnerabilities to
evaluate the proposed approach. The evaluation results, including
quantitative measurement and human evaluation, demonstrate
that our approach is highly effective and outperforms state-of-
the-art approaches. Our work for the first time formulates the
problem of vulnerability description generation, and makes one
step further towards automated vulnerability diagnosis.

Index Terms—Vulnerability Diagnosis, Vulnerability Localiza-
tion, Description Generation, Deep Learning

I. INTRODUCTION

Vulnerabilities are typically security weaknesses in software

or systems that can be exploited by attackers to perform

malicious actions [1]. Therefore, it is crucial to rapidly dis-

cover and eliminate vulnerabilities to prevent security risks.

However, in practice, developers often spend considerable time

for fixing a vulnerability, especially when they do not know

the weakness (e.g., potential attacks) [2], [3]. Hence, in order

to facilitate vulnerability repair, it is also vital to explore

automated detection and diagnosis techniques that cater to the

vulnerability information needs of developers [4].

Prior studies have devoted a substantial effort towards

automated vulnerability detection and they can be roughly

categorized into static analysis-based and deep learning-based

(DL-based) approaches. In general, static analysis tools tend

to report an excess of false positives since they usually rely on

a set of manually pre-defined rules [4], [5]. It is difficult and

time-consuming for developers to find out the real vulnerabil-

ities in redundant and trivial reported issues because most of

∗Corresponding author.§Also with Zhongguancun Laboratory, Beijing, P.R.China.

the information is meaningless [6]. On the contrary, DL-based

models have demonstrated their superiority in vulnerability

detection by capturing complex code semantics [7], [8], [9].

However, most of these DL-based approaches only report vul-

nerabilities at the function level (i.e., predicting vulnerable or

not). As a result, verifying the reported vulnerability becomes

another burden for developers or even security experts due to

no enough information [10].

To alleviate the problem, recent work aims to locate vulner-

able statements with different DL-based approaches [11], [12],

[13], [14]. Existing work can be divided into two categories

according to their methodology: feature learning and end-

to-end learning. Feature learning means that the vulnerable

statements are predicted via inner layer features of function-

level detection models. For example, IVDetect employs Graph

Convolution Network (GCN) over program dependence graph

(PDG) of source code for function-level vulnerability detec-

tion, and derives the vulnerable statements of subgraphs as

the interpretation using the learned features [12]. However,

such features are not necessarily consistent with the vulnerable

statements, since a vulnerability usually includes many fewer

locations (e.g., single lines) compared to that of the subgraph.

Consequently, the performance is found to be not satisfactory

when used for locating vulnerable statements [14]. For this

reason, LineVD learns to locate vulnerable statements in a

fully supervised manner based on PDG and Graph Attention

Network (GAT), which achieves a significant improvement

[14]. Such approaches are beneficial for reducing the time

cost of debugging a discovered vulnerability, yet they still

have two main limitations. First, existing vulnerability local-

ization approaches simply borrow off-the-shelf Graph Neural

Networks (GNNs). As GNNs are usually designed to capture

neighborhood information, whereas the size of program graphs

such as PDG can be very large (e.g., an average of 158 nodes

and 487 edges in our dataset). Hence, applying them to large

program graphs weakens the capability for obtaining precise

dependencies including long-range and integral dependency

information [15], [16], [17]. Second, in practice, misunder-

standing of security concepts is quite common for developers

due to lack of security knowledge [18], [19]. Therefore, it

remains challenging to figure out the behavior and reason for

the vulnerability.

In this paper, we propose a novel neural approach namely

VulTeller, which learns to locate vulnerable statements and

meanwhile generate natural language descriptions, so as to

provide additional clues for diagnosing the reported vulnera-

332

2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE)

2643-1572/23/$31.00 ©2023 IEEE
DOI 10.1109/ASE56229.2023.00045

20
23

 3
8t

h
IE

EE
/A

CM
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 A
ut

om
at

ed
 S

of
tw

ar
e

En
gi

ne
er

in
g

(A
SE

) |
 9

79
-8

-3
50

3-
29

96
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

AS
E5

62
29

.2
02

3.
00

04
5

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on June 27,2024 at 03:18:41 UTC from IEEE Xplore. Restrictions apply.

Location: line 3
Description: prealloc_elems_and_freelist in kernel/bpf/stackmap.c in the

Linux kernel before 5.14.12 allows unprivileged users to trigger an eBPF

multiplication integer overflow with a resultant out-of-bounds write.

static int prealloc_elems_and_freelist(struct bpf_stack_map *smap)

{

u32 elem_size = sizeof(struct stack_map_bucket) + smap->map.value_size;

int err;

smap->elems = bpf_map_area_alloc(elem_size * smap->map.max_entries,

smap->map.numa_node);

if (!smap->elems)

return -ENOMEM;

err = pcpu_freelist_init(&smap->freelist);

if (err)

goto free_elems;

pcpu_freelist_populate(&smap->freelist, smap->elems, elem_size,

smap->map.max_entries);

return 0;

free_elems:
bpf_map_area_free(smap->elems);

return err;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Fig. 1. A motivating example of one vulnerable C function from CVE-2021-
41864. The message below the function is the location and description of
the vulnerability that can be automatically reported by our approach. The fix
for the integer overflow of line 3 is to define a variable with greater size
by “u64 elem_size = sizeof(struct stack_map_bucket) +
(u64)smap->map.value_size;” to avoid the out-of-bounds write.

bility. That is, we separate it into two sub-tasks: vulnerability

localization and description generation. Suppose the function

prealloc elems and freelist is detected as vulnerable by ex-

isting detectors in Figure 1, and a developer tries to inspect

and confirm it. In most cases, it is difficult to find out the

reason for the vulnerability without additional information.

Fortunately, we can first locate the vulnerable statements to

narrow down the scope of inspection (e.g., line 3), and then

generate descriptive text in the form of natural language to

explain what the vulnerability is and why it occurred. Note

that there can be multiple vulnerable statements in a function.

In this example, an integer overflow can be caused by the

variable declaration statement if an attacker writes a large

value (i.e., out-of-bounds write) to it. By contrast, providing

such messages can substantially reduce the time required for

a developer to identify and remediate vulnerabilities.

The challenge for tackling the two tasks is how to obtain

precise and sufficient vulnerable code semantics. Different

from existing work mentioned earlier, we design a novel neural

model based on control flow graph (CFG) and taint analysis

[20] to better capture control and data flow dependencies in

the functions. Specifically, to analyze the source code of one

suspicious function, we begin by converting it into a CFG

and extracting all simple control flow paths consisting of

multiple nodes. To depict control dependency, we could use

one Recurrent Neural Network (RNN) [21] to encode all these

node sequences. However, the number of paths is usually large,

and most of them would be noise. To obtain precise control

dependency and data dependency, we conduct taint analysis

on the source code, resulting in potentially tainted data flows

from sources to sinks. We rank the control flow paths by their

overlapping frequency with the data flows and select the top-k

paths, which can filter out noise and refine data dependencies.

Next, we use a Bidrectional Gated Recurrent Unit (Bi-GRU)

[22] to encode the top-k paths along with their ranks, and apply

node-wise max pooling to get the vector representation of each

node. To locate vulnerabilities, we perform node classification

to classify each node as vulnerable or not. For description

generation, we use a GRU-based decoder with an attention

mechanism over nodes to generate the word one by one and

finally form the sentence.

We collect real-world C/C++ vulnerabilities for evaluation,

each of which contains the vulnerable function as well as its

vulnerable locations and description. We compare VulTeller

with a variety of baselines including static analysis tools and

DL-based approaches on the dataset. The extensive experi-

mental results demonstrate that VulTeller outperforms these

baselines significantly. We also conduct a human evaluation

to assess the quality of generated descriptions and the results

further confirm the effectiveness of VulTeller. In summary, the

main contributions of this work are as follows:

• We formulate a new problem of vulnerability description

generation. To the best of our knowledge, this is the first

work that aims to generate descriptions of the vulnerabil-

ities, which can further assist developers in vulnerability

diagnosis.

• We propose a novel neural model for vulnerability localiza-

tion and description generation. It leverages the knowledge

from control flows of CFG and data flows of taint analysis to

precisely capture control and data dependency information.

• We conduct extensive experiments on a large-scale dataset

consisting of vulnerabilities from real-world C/C++ projects,

which demonstrates the effectiveness of our approach in

terms of automatic metrics and human evaluation.

II. PROBLEM DEFINITION

Our goal is to facilitate developers in diagnosing newly

discovered vulnerabilities, especially when they lack security

knowledge. To this end, we formulate the problem of vul-

nerability diagnosis as two conjunctive tasks. One is vulner-
ability localization that locates vulnerable statements within

a function. Another is description generation that describes

symptoms and causes of the vulnerability. We formally define

them as follows.

Let F = (t1, t2, . . . , tC) ≡ (s1, s2, . . . , sN) demotes

the source code of a function , where ti, i ∈ [1, C] and

sj , j ∈ [1, N] are the tokens and statements respectively in

the function.

Vulnerability Localization. With the statements S = (s1,. . . ,

sN) as input, the target is to find a subset S′ ⊂ S, each

element of which is a vulnerable statement. Alternatively, a

learning-based model may learn the mapping φ : F → Y to

give all the labels of the statements as Y = (y1, y2, . . . , yN),
where yj ∈ {0, 1} indicates if the statement sj is vulnerable

or not.

Description Generation. The input of this task could be either

tokens t1 to tC or statements s1 to sN . The target is to learn

a text generator ψ : F → D that generates natural language

description D = (d1, d2, . . . , dM) to describe the vulnerability

333

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on June 27,2024 at 03:18:41 UTC from IEEE Xplore. Restrictions apply.

in F where di is the i-th token in the generated sequence of

length M .

In our work, we assume that the vulnerable function has

been reported by a static detector because vulnerability de-

tection is a comparatively well-studied problem, and there

remains extra manual effort for debugging. However, our

approach can also easily generalize to other scenarios by

adding non-vulnerable functions into the training set. For

example, when no statements are located by our model, it

means that the function is predicted to be not vulnerable, and

we do not generate the description for it. We provide the details

of our approach in the next section.

III. APPROACH

A. Overview

Existing studies [8], [12], [14], [23] have confirmed that

utilizing the dependency information from graph structures

is able to capture complex program semantics. However, it

is still under-explored regarding the feasibility of directly

borrowing GNNs on vulnerability discovery, including Graph

Convolutional Network (GCN) [24], Gated Graph Neural

Network (GGNN) [25] and Graph Attention Network (GAT)

[26] that are designed to analyze spectral graphs instead of

program graphs. GNNs are capable of capturing the local

information from the neighborhood nodes, while the long-

range dependencies from the remote nodes are prone to be

missed [15], [16]. Unfortunately, program graphs especially

program dependency graph (PDG) are usually large (e.g., up

to 10k nodes in Sec. 4.1). As a result, existing GNNs may

not precisely capture the node dependencies and thus weakens

the performance. Therefore, we propose a novel approach to

overcome the drawback. On the one hand, we use the control

flow graph (CFG) instead of PDG as a basis because of its

moderate size while carrying essential semantics in the form

of control flows. On the other hand, in order to consider data

dependencies, we adopt taint analysis to identify tainted data

flows in it. Based on them, we devise a novel neural model

to capture precise control and data dependencies for the two

tasks.

The overall workflow of our approach is shown in Figure

2. In the representation phase, we parse a code fragment into

CFG and simplify it by node reduction to remove redundant

nodes. We extract the control flow paths (CFPs) from the

simplified CFG. Due to the path explosion problem and noises

in them, taint analysis is adopted to identify potentially tainted

data flows and CFPs are ranked based on their overlap with

tainted flows, allowing us to keep the top-k CFPs with ranks

that indicate priorities. Next, we use a bidirectional GRU

module to encode selected CFPs into node vectors. Note that

each node may have multiple vectors, we consider the ranks of

their corresponding CFPs as an additional feature to form new

vectors. Afterwards, we perform the max pooling over those

new vectors and get the node representations. For vulnerability

localization, we transform it into a node classification problem,

where each node (i.e., statement) is predicted as vulnerable

or not; For description generation, we adopt a GRU decoder

void recvmsg (char *msg){

strcpy(buffer, msg);

}

Source Code
Parsing

CFP
Extraction

Taint Analysis

Path Ranking

CFG Tainted
Data Flows

CFPs Top-k
CFPs

Path
Encoder

Node
Features

Decoders

Locations

Description

Representation Refinement Model

Input Output
Vulnerable function

Fig. 2. The overall workflow of our approach.

with node attention to generate sentences that describe the

vulnerability.

B. Representation

Given the source code of one function, we use an off-the-

shelf parser (e.g., Joern [27]) to get the CFG representation.

Nevertheless, the representations of CFG vary on the granular-

ity of basic blocks. For instance, Joern treats the basic block as

one basic operation (e.g., arithmetic operation) and separates

one statement into several iterative operations (nodes). Such a

practice is useful to know the micro semantics, but they are

not suitable for node classification that determines vulnerable

statements. To simplify it, we cut off nodes that are elements

of other nodes while keep the original control flows. For

example, if the control flow is “1 → 2 → 3 → 5” and

node 2 belong to the statement of node 3, we convert it to

“1 → 3 → 5”. Formally, let Go = (Vo, Eo) denote the

original CFG, where Vo and Eo are the sets of nodes and

edges respectively. We can simplify Go by node reduction,

that is, vi = reduce(v′j , . . . , v
′
k), v

′ ∈ Vo∧vi ∈ V if v′j , . . . , v
′
k

come from the statement si. Likewise, the edges are simplified

accordingly. Through simplification, we obtain the simplified

CFG as G = (V, E).
After that, we extract control flow paths from it. In this

paper, we define a control flow path as one simple path from

the entry to the exit of a CFG. Here simple path means that a

path may have repeat nodes but not edges. This is to consider

the semantics of loops that may incur a vulnerability. The

algorithm for extracting simple paths is performing a depth-

first-search over the nodes of CFG and recording visited edges,

which yields the edges in order. We sort out the edges and get

the sequences of nodes as full CFPs. For convenience, we

denote them as P = {p1, p2, . . . , pT } and each p has multiple

nodes from V .

C. Refinement

When we have the full CFPs, a straightforward practice

is to consider all of them as the input of neural models.

However, the path explosion problem [28] may occur since

there could be numerous paths in one CFG, particularly in

real-world programs where the nested branches or loops are

common. Besides, not all paths are helpful for understanding

334

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on June 27,2024 at 03:18:41 UTC from IEEE Xplore. Restrictions apply.

the semantics of vulnerability, and many of them could be

noises [29].

1) Taint Analysis: To overcome it, we employ static taint

analysis [30] for reducing the noisy information and mean-

while extracting data dependency information. Taint analysis

or taint tracking is a technique of information flow analysis by

tracking from a tainted source (e.g., untrusted data) through the

system to a specified sink (e.g., sensitive operators) [20], [31],

[32]. It consists of three important parts, namely source, sink

and sanitizer. Generally, a vulnerability may arise from the

source and occur at the sink. However, if there is a sanitizer

in the program that checks or cleanses the source before it

flows to the sink, then the vulnerability would not occur any

more.

Therefore, we adopt the methodology introduced by Yam-

aguchi et al. [33], [30] for conducting taint analysis, which

is applicable to the intra-procedural analysis at the source

code level. That is, we mark the parameters, global and local

variables as sources, and specify function calls as sinks. The

rationale behind regarding local variables as taint sources

is that these variables frequently serve as origins of system

inputs. For example, a local variable defined to read the

untruasted file. Then we traverse the dependency graph of the

source code, which starts from the sources and propagates

to the sinks to identify cases where attacker-controlled data

is used by a sensitive operation. In order to exclude prop-

erly sanitized cases, we utilize the symbol-specific syntax-

only sanitizer descriptions for UNSANITIZED traversal [30].

The traversal exclusively identifies attacker-controlled sources

under the fulfillment of the following conditions:

• There exists a path from the source statement to the sink

statement in the control flow graph, such that no node on

the path matches any of the sanitizer descriptions.

• A variable initially defined by the source and subse-

quently utilized by the sink successfully reaches the sink

through the control flow path. This signifies that the

variable remains unaltered by any node along the path.

Taking buffer overflows as an illustrative example, the moti-

vation of adopting sanitizer descriptions is that buffer overflow

instances often result from insufficiently validated length fields

supplied to copy operations. To elaborate, consider the context

of the Linux kernel code, where numerous buffer overflows

occur when size fields, retrieved by the function get user,

are directly passed as third arguments to memcpy without a

proper validation. This vulnerability pattern can be captured

by a traversal as follows:

ARG1
get user ◦ UNSANITIZED{Ts} ◦ ARG3

memcpy

This traversal targets third arguments for memcpy that are

directly influenced by the first arguments to get user and lack

proper validation, as indicated by nodes satisfying the traversal

Ts. A match traversal could involve relational expressions con-

taining the tracked variable s, e.g., x < buffer size or within

a call to the MIN macro. In addition, sanitizer descriptions

are also well suited for a wide range of vulnerabilities, such

1 8Source Sink

1 3 4 8Source Sink

2 3 4 8 9Source Sink

2 3 5Source Sink6

Control Flow Paths

Taint Flows

Top-3 Control Flow Paths

1 2 3 5 6 2 8 9

1 2 3 5 7 9

1 2 3 4 2 8 9

1 2 8 9

1 2 3 4 2 8 9

1 2 3 5 6 2 8 9

1 2 8 9

1 2 3 5 7 9

Fig. 3. An example for the process of path ranking.

as injection vulnerabilities, integer overflows, and missing

permission checks. This ensures that not all the data flows

are treated as taint flows, which helps us to extract more

useful dependency information. Formally, the process of taint

analysis yields multiple taint flows F , and each flow f ∈ F
consists of the tainted variables.

2) Path Ranking: As it should be, there could still exist

false taint flows since a static tool can not perfectly identify

all sanitizers. Nevertheless, we can utilize the results of taint

analysis to select control flow paths that have more taint flows.

The intuition is that one path could more likely contain vul-

nerable nodes (i.e., statements) if it is prone to be tainted. One

possible solution is to consider the overlaps of nodes regardless

of their inclusion relations or orders. However, it may wrongly

place one CFP to the high rank only because it contains

more nodes. Therefore, we propose a flow-aware matching

algorithm to rank the CFPs by their overlaps between taint

flows. Specifically, for each CFP pi, if all tainted identifiers

of one taint flow fj can be found in pi and they follow the

order of nodes of pi, then fj is a valid overlap and the number

increments. Note that we only count the situation of f ⊆ p
because it implies that the taint flow f comes from the CFP p,

and thus p is more vulnerable. We sort the T CFPs according

to their overlapping numbers in an descending order and keep

top-k CFPs, denoted as Pk ⊂ P , k ≤ T . Here k is a hyper-

parameter, and can be optimized based on the validation set

during the learning stage.

To better illustrate this process, we present an example in

Figure 3. In this example, we assume that the CFG has 4

simple paths and there are 4 taint flows obtained from the

step of taint analysis. Then, we count the numbers of taint

flows that are subsequences for the 4 CFPs p1 to p4. In this

example, we can observe that p1 has one taint flow (i.e., the

dotted arrow), p2 has three and so on. Finally, we select the

top-3 CFPs which are sorted by their numbers and discard the

4th one.

D. Model

We introduce the neural network for vulnerability local-

ization and description generation, which is presented in

335

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on June 27,2024 at 03:18:41 UTC from IEEE Xplore. Restrictions apply.

Figure 4. The model consists of three components: the path

encoder, locator, and generator. We elaborate on each of these

components as follows.
1) Path Encoder: The path encoder is used to encode

the top-k control flow paths mentioned above. Specifically,

suppose we have the top-k CFPs Pk = {p1, p2, . . . , pk}
and pi = (v1, . . . , vni), we encode them individually in a

sequential manner. Here v1 and vn are the entry and exit node

of CFG respectively, and there are n nodes in total. Given one

node vj that corresponds to one statement sj = (t1, . . . , tb)
and t is one of the tokens in it, we first embed them into token

vectors via an embedding layer We, that is, xij =
⋃

t∈sj
We(t).

For simplicity, we use the notation of eij to represent the initial

vector of node vj in path pi, and calculate its value by max

pooling, that is, eij = max(xij).
Since the dependency information (i.e., control/data depen-

dency) has been integrated into Pk, we can automatically

capture it via sequential neural networks such as GRU [34]

or LSTM [35], which have been demonstrated effective in

learning semantics of dependencies [36], [7]. In this work, we

choose to use GRU because it is more efficient than LSTM

yet has comparable performance. The GRU works in a forward

way to encode the node embeddings by treating one path as

a node sequence. Furthermore, we adopt a backward GRU to

enhance the captured dependency information and concatenate

its hidden states with the forward ones, known as bidirectional

GRU (Bi-GRU). Let Q = [ei1, . . . , e
i
ni
] denote the vectors of

embedded nodes in the sequence, we encode the sequence into

hidden states H(Q) = [h11, . . . , h
i
ni
]. For each hit, t ∈ [1, ni],

we simply abbreviate the formula as:

hit = Bi-GRU(eit, h
i
t−1), (1)

and t corresponds to the time step during a single path

encoding.

After we obtain all the hidden states of the k CFPs, we

transit the nodes into vectors in the light of their respective

locations as well as path ranks, which we call it Rank-aware
Transition. In specific, assume that node vj exists in multiple

paths of P ′
k =

⋃ik
i=i0

pi, 1 ≤ i0 ≤ ik ≤ k, for each path pi,

the node vector h′ij is calculated by the following equations:

hij = map(j, hit),

h′ij = σ(Wk([h
i
j ; 1/r

i
j]) + bk),

(2)

where the function map is used to look up the hidden state

of the node in this path, and rij represents the path rank.

Wk, bk are the weight matrix and bias term respectively.

We concatenate the inverse rank as an additional feature to

the acquired hidden state, and project them to a new vector

space. This indicates that the importance of node vj from pi
will be largely weakened if it ranks poorly. Consequently,

the influence of noisy paths will be eliminated or reduced.

Then we perform max pooling on all the path-dependent node

vectors to get the final vector representation of this node as:

h′j = max(
⋃

i∈[i0,ik]

h′ij). (3)

These node vectors encode vulnerability-related dependency

information from both control flows and tainted data flows,

so as to be exploited for locating vulnerable statements and

generating vulnerability descriptions.

2) Vulnerability Locator: Now that we get the node vectors,

and recall that we have ensured all the nodes are distinct

in terms of statements, we can easily transform the problem

of vulnerability localization into node classification. In detail,

each node is classified into vulnerable or not via a multi-layer

perceptron (MLP) classifier to calculate the logits, namely

lj =MLP (h′j). Then the process of making predictions can

be expressed as:

ŷj =

{
1, sigmoid(lj) > δ
0, sigmoid(lj) ≤ δ

(4)

where δ is a threshold.

For training the locator, we use the binary cross-entropy

which is defined as:

L(Θ, ŷ, y) = −
X∑
i=1

N∑
j=1

(y
(i)
j ·log(ŷ(i)j)+(1−y(i)j)·log(1−ŷ(i)j)

Here X is the number of samples in the training set.

3) Description Generator: Similarly, we can generate de-

scriptive words that may include the symptom or reason for

the vulnerability by decoding the node vectors. Inspired by

code comment generation [37], our generator is based on GRU

because of its effectiveness in understanding code semantics.

When decoding the vulnerable code to generate the m-th word

at time m, the hidden state gm of the decoder is updated by:

gm = GRU(gm−1, dm−1), (5)

where dm−1 is the previous input vector. Next, an attention

module [38] is adopted, which can distinguish the nodes

for providing more useful information of a vulnerability. It

computes the context vector over the node vectors H(Q),
denoted as:

cm = Attention(gm, H(Q)) (6)

To jointly take into account past alignment information, we

apply the input-feeding strategy [39] which concatenates cm−1

with inputs dm−1. Then the probability for the next word dm
is

P (dm|d1, . . . , dm−1, F) = gen(dm−1, gm, cm−1), (7)

where gen is the generator function implemented by an MLP

layer along with softmax.

Training such a generator is to minimize the loss function:

L(θ) = −
X∑
i=1

M∑
j=1

logP (d
(i)
j |d(i)<j , F

(i)),

where θ is the trainable parameters.

After training, we choose the word with the highest proba-

bility as the generated word at each step. The process iterates

until the end of sentence word </s> and results in a complete

description for the vulnerability.

336

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on June 27,2024 at 03:18:41 UTC from IEEE Xplore. Restrictions apply.

…

<s>

Decoders

…

…

…

…

…

Rank-aware
Transition

…

…

…

…

Node Vectors

Attention

</s>

… … …

…

Path Encoder

Description
Generator

Vulnerability
Locator

Fig. 4. The architecture of our model. Here the locator and generator only share the structure of the encoder, and they are trained independently to produce
two separate models.

IV. EVALUATION

A. Dataset

We build our dataset based on the widely-used BigVul [40],

which provides a large number of vulnerabilities (CVEs) re-

ported and/or validated by security experts from more than 300

different open-source C/C++ GitHub projects, along with their

vulnerability patches and descriptions. Notably, the dataset

contains a total of 11,823 vulnerable functions. However,

the original dataset has its flaws, such as meaningless code

changes (e.g., formatting changes) and incomplete functions.

Following LineVD [14], we exclude such instances to keep the

dataset consistent with it. We only kept the first two sentences

of the CVE descriptions in consideration of covering more

vulnerability-related information while removing lengthy and

irrelevant descriptions at the same time. Moreover, we normal-

ized the version numbers and file paths to “VERSION” and

“FILE” respectively, to further streamline the descriptions and

retain more informative words. As a result, our dataset consists

of 10,811 distinct vulnerable C/C++ functions along with their

patches and descriptions. These vulnerabilities originate from a

range of 293 projects, spanning across 71 vulnerability types,

thereby contributing to a diverse and comprehensive dataset

for our task.

We create ground-truth labels of vulnerable statements

based on the patches using heuristics following existing works

[12], [14]. Specifically, we treat removed lines or all lines

that are control or data dependent on the added lines as

vulnerable. We then randomly split the dataset into training,

validation, and test sets with a ratio of 8:1:1. Table I provides

some statistics about our dataset. #FuncToken and #DescWord

represent the number of tokens in the functions and words in

the descriptions respectively. #FuncLine and #FuncVline are

the numbers of lines and vulnerable lines in the functions.

#FuncUnqT. and #DescUnqW. are the respective vocab sizes.

We also compare the graph size between PDG and CFG for

example #PDGNode and #CFGNode represent the number of

nodes in the PDGs and original CFGs. On average, the size

of PDG in terms of edges is much larger than that of CFG,

TABLE I
THE STATISTICS OF OUR DATASET.

Source Avg. Max Graph Avg Max

#FuncToken 606 33,939 #PDGNode 158 11,859
#FuncLine 107 6,341 #PDGEdge 487 251,733
#FuncVLine 7 498 #PDGPath >1MM >40MM
#FuncUnqT. 191,692 #CFGNode 154 10,561
#DescWord 43 148 #CFGEdge 170 11,439
#DescUnqW. 10,986 #CFGPath 1602 66,593

which indicates that it is hard to capture precise dependency

information if we directly apply existing GNNs to it (as

mentioned in Section III-A).

B. Experimental Settings

We implement VulTeller with Pytorch and Joern, where

Joern is used to parse the C/C++ functions to construct CFGs,

as well as perform taint analysis. We set the vocabulary sizes

for functions and descriptions to 50K and 10K, respectively,

and used an embedding size and hidden state dimension of

256. To handle the oversized CFGs, we limited the number

of nodes in the CFPs to 200 and kept the top-10 CFPs,

since we noticed marginal improvements as the limit was

increased. For vulnerability localization, we set the threshold

δ to 0.1 according to the best F1-score on the validation set,

as is commonly done in existing work [14]. For description

generation, we employed a vanilla greedy search approach and

established a maximum description length of 50 to mitigate

lengthy and repetitive outcomes. We used a batch size of 32

and the Adam optimizer with a learning rate of 0.001 for

training the vulnerability locator and description generator,

with maximum epochs of 10 and 50 respectively, as they have

different convergence rates.

All experiments were conducted on an Ubuntu 18.04 server

with 48 cores of Intel(R) Xeon(R) Silver 4214 CPU @

2.20GHz, 256GB RAM, and a GTX3090 GPU with 24GB

memory.

337

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on June 27,2024 at 03:18:41 UTC from IEEE Xplore. Restrictions apply.

C. Baselines

For vulnerability localization and description generation, we

respectively select the following baselines for comparison.

1) Vulnerability Localization: There are several DL-based

approaches that directly or indirectly (i.e., supervised / un-

supervised learning) predict the locations of vulnerabilities.

To investigate the effect of different learning manners, we

choose two typical models i.e., IVDetect [12] and LineVD
[14] respectively. We reproduce them from their publicly

available repositories with default settings and got similar yet

slightly lower results, thus we cite the stated ones to avoid the

bias. Additionally, since static analysis tools are commonly

used in practice [41], [42], we also include two open-source

tools, Cppcheck and Flawfinder. They can identify line-level

vulnerabilities in C/C++ code and have been evaluated for

vulnerability detection in previous studies. We acknowledge

the presence of more advanced tools such as Infer [43]

and CodeQL [44]. However, these tools necessitate access to

compiled code. This poses a challenge for our dataset, which

encompasses a multitude of projects and over 3,000 commits.

Consequently, the application of these tools to our extensive

dataset is not straightforward. We use default configurations

to scan the vulnerabilities in the functions.

2) Description Generation: After a thorough search of the

literature on vulnerability analysis, we did not find any existing

work that focuses on generating vulnerability descriptions.

Instead, we select some typical models such as Seq2Seq,

Transformer, CodeBert, G2S, and GraphCodeBert for com-

parison. We use them to generate descriptions based on the

source code, with the same hyperparameters as our model

unless otherwise specified.

• Seq2Seq. Seq2Seq is a classic neural encoder-decoder

model that has been used to generate code documents

including code comments [37], commit messages [45], etc.

It encodes the token sequence of one function into vectors

via Bi-LSTM and decodes it to text with an attentional

LSTM. We limit the max length of source code to 400 for

a high coverage.

• Transformer. Transformer follows an encoder-decoder

structure but uses self-attention mechanisms to process

sequences of data (i.e., token sequence) and has also been

widely adopted in code or its comment generation [46], [47].

Following existing work, we use 6 layers and 8 heads in the

Transformer.

• G2S. G2S employs an encoder-based on GGNN and a

RNN decoder, which shows strong performance in NMT.

Similarly, there exist GNN-based models for code comment

generation such as GCN and GAT [48], [49]. In order to

apply G2S in vulnerability description generation, we parse

the source code into PDG and use LSTM as the decoder.

We set the propagation step as 3 which yields a fairly better

result.

• CodeBert. CodeBert is a bimodal pre-trained model based

on Transformer that captures the semantic connection be-

tween natural language and programming language, and

TABLE II
THE EFFECTIVENESS OF DIFFERENT APPROACHES FOR VULNERABILITY

LOCALIZATION.

Methods Precision Recall F1-score

Cppcheck 11.9 2.3 3.6
FlawFinder 3.9 2.8 2.2

IVDetect 23.8 14.0 17.6
LineVD 27.1 53.3 36.0

VulTeller 38.9 55.6 45.8

produces general-purpose representations to support gener-

ation tasks [50]. We keep the dimensions of embeddings

and hidden states as default since there is no way to easily

change the hyper-parameters of pre-trained model.

• GraphCodeBert. GraphCodeBert is a more recent pre-

trained model for programming language based on Trans-

former that introduces a data flow graph-guided masked

attention function to incorporate the code structure [51]. We

keep the settings as same as CodeBert.

D. Evaluation Metrics

We evaluate the performance of different approaches on the

two tasks with different metrics. For vulnerability localization,

since it can be treated as a binary classification problem,

we adopt Precision (abbr. P), Recall (abbr. R) and F1-score

(abbr. F1) to measure the accuracy of each approach in

locating the vulnerable statements. For description generation,

we use smoothed BLEU-4 [52] and ROUGE-L [53] to assess

the textual similarity between the reference descriptions and

the generated ones, which are also commonly used in code

document generation tasks. For these metrics, we present

their values in percentage and a higher value means better

performance.

E. Results

We investigate the effectiveness of all aforementioned ap-

proaches by answering the following three research questions.

RQ1. How does our approach perform on vulnerability
localization compared to the state-of-the-art?

Table II presents the experimental results of all approaches.

First, we can see that static analysis-based tools perform badly

in terms of F1-score. Not only do they report a large fraction

of false positives, but also they miss many true positives. For

example, the precision of Cppcheck is 11.9%, which means

that nearly 90% of the reported statements are not vulnerable.

And it does not report any vulnerabilities in some cases,

leading to a low recall value. FlawFinder achieves a slightly

higher recall, yet the precision is even lower. Intuitively,

this is not surprising in that static tools solely depend on

predefined rules/patterns, whereas vulnerabilities are naturally

complex and varied. To further figure out the reason for

the high false positive/negative rate, we manually inspect a

subset of the warnings. We find that they tend to report

potential vulnerabilities based on the occurrence of specific

338

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on June 27,2024 at 03:18:41 UTC from IEEE Xplore. Restrictions apply.

TABLE III
THE EFFECTIVENESS OF DIFFERENT APPROACHES FOR DESCRIPTION

GENERATION

Groups Models BLEU ROUGE-L

Sequence-based
Seq2seq 42.1 54.2
Transformer 41.8 54.1
CodeBert 43.4 57.0

Graph-based
G2S 37.2 50.8
GraphCodeBert 43.9 57.6

VulTeller 46.3 58.6

API calls. For instance, FlawFinder reports a buffer overflow

vulnerability where the “fgetc()” is called, even though the

boundary has been checked with another API. Conversely, in

most cases when it misses a real vulnerability, there are no

such APIs and it simply reports the result of no hits found.

It is obvious that neural network-based approaches achieve

much better performance. In particular, the precision of IVDe-

tect is 23.8%, nearly twice the precision of Cppcheck. More-

over, the recall values of both neural models far outweigh those

of static tools. The significant improvement may largely at-

tribute to the capability of neural models for learning semantic

patterns across the structure of PDGs. By comparing IVDetect

and LineVD, we can observe that their recall values also vary a

lot. Since they have the same source code representation (i.e.,

PDG) and similar GNNs, the most possible reason is that an

end-to-end model captures more statement-level vulnerability

information as LineVD does. While IVDetect relies on the

inner features of the learned model and thus may not explicitly

contribute to locating the vulnerable statements.

Our approach improves the precision of all baselines by a

large margin and meanwhile obtains an even higher recall.

This demonstrates that more precise dependency information

is really beneficial to exclude false positives by capturing

control/data dependencies from control flow paths and re-

ducing noises with taint analysis. Nonetheless, the overall

performance of all approaches is not high enough, indicating

that automated vulnerability localization is challenging. In

practice, one can raise the threshold δ to further reduce false

positives, and refer to the generated description to more easily

confirm a vulnerability.

RQ2. How effective is our proposed approach for vulner-
ability description generation?

Initially, we could include the generated descriptions of

static tools for comparison. But given the inconsistent specifi-

cations between the tools and CVEs, and the high false positive

rate, the performance can be quite poor (e.g., FlawFinder got

BLEU=5.2% and ROUGE-L=29.9%). Therefore, we focus on

learning-based approaches here.

As shown in Table III, most of the models yield good

results in terms of both metrics. For instance, Seq2seq model

obtains a BLEU score of 42.1%, which is competitive with the

standard of machine translation. This means that such neu-

ral networks are indeed feasible for generating vulnerability

descriptions. However, due to the diversity of vulnerabilities

and details, improving the quality of generated descriptions

is not trivial. For example, Transformer performs worse than

Seq2seq (e.g., 0.3% lower in terms of BLEU) despite its self-

attention mechanism. In fact, not all the tokens necessarily

have dependencies inside a program, hence considering all

the relations of the tokens may cause confusion. By contrast,

CodeBert improves them significantly since it utilizes the prior

knowledge learned from a large code corpus, which helps to

focus on real dependencies that are related to vulnerability

semantics.

G2S is expected to capture useful dependencies over the

PDGs of a given vulnerable function. However, the BLEU

score as well as the ROUGE-L score is substantially lower than

sequence-based ones, for example, Transformer outperforms it

by 4.6% in terms of BLEU. This may blame to the large size

of PDG and the bottleneck of existing GNNs in capturing

long-range dependency information as previously discussed.

GraphCodeBert shows a marked advantage over G2S and

achieves the best performance among all the baselines, even

though it is only based on BERT and data flow graph without

GNNs. In specific, the score of ROUGE-L is 57.6%, which

improves G2S and CodeBert by 6.8% and 0.6% respectively.

We can deduce that such a model focuses more on the relation

of ”where-the-value-comes-from” between variables and thus

excels in capturing data dependencies compared to others.

Recently, ChatGPT has showed a great capability of text

generation, and one would like to know how it performs

when generating vulnerability descriptions. Through few-shot

learning [54], we got an BLEU score of 28.4% and ROUGE-

L score of 48.6%. Even if there are ways to improve, we do

not recommend relying on the online ChatGPT to analysis

vulnerabilities (especially in industrial projects) due to the

potential privacy and security issues.

VulTeller significantly outperforms all the baselines. Specif-

ically, the BLEU and ROUGE-L scores exceed the best one

(i.e., GraphCodeBert) by 2.4% and 1.0% respectively. It can

be concluded that with precise control and data dependen-

cies from the control flows along with tainted data flows,

our model learns more accurate semantics of vulnerabilities,

which actually helps in generating vulnerability descriptions.

Besides, these results also pose a further need for more precise

representations to understand the vulnerability.

RQ3. To what extent do the components of our approach
contribute to the effectiveness of both tasks?

In this RQ, we want to know how the CFG simplifica-

tion, taint analysis and path ranking influence the overall

performance. We conduct the ablation study by removing or

replacing each component once at a time, leaving everything

else the same. The results are presented in Table IV.

First, we extract CFPs from the original CFG generated

by Joern, and feed them into our two models (i.e., w/o CFG

Simp.). We can observe that the performance on both tasks

drops by 0.9% to 1.5%. This is because there are many redun-

dant nodes and edges in the original CFG, where several nodes

339

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on June 27,2024 at 03:18:41 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
THE EFFECTS OF DIFFERENT COMPONENTS IN VULTELLER FOR THE TWO

TASKS.

Localization Generation

Strategy P R F1 BLEU ROUGE-L

VulTeller 38.9 55.6 45.8 46.3 58.6
w/o CFG Simp. 37.6 53.9 44.3 45.2 57.7
w/o taints 36.1 50.5 42.2 42.3 54.4
w/o ranks 38.7 53.2 44.8 45.6 58.1

belong to one single statement. Such redundancy information

has a negative impact on capturing the natural dependency.

After simplification, the average numbers of nodes and edges

are 52 and 69, which are approximately twice smaller as the

original ones. Hence, the size of the graph can indeed affect

the performance of our model.

Next, we investigate the effect of CFP selection from two

perspectives. One is totally abandoning taint analysis and using

random K paths instead (i.e., w/o taints). As the table shows,

the performance in terms of all metrics decreases significantly.

In particular, the F1-score for vulnerability localization is 3.6%

lower than VulTeller, and similarly the BLEU or ROUGE-L

score. Although the control and data dependency can also be

captured through our model, it misses vulnerable paths to a

large extent without taint analysis. Moreover, such a random

selection can bring much noise that weakens the capability

of our model to focus on more important ones. Another is to

keep the filtered CFPs but ignore their ranks when encoding

these paths (i.e., w/o ranks). Compared to the former, it

achieves a notable improvement, especially in locating vulner-

able statements. Nonetheless, in comparison to the utilization

of path ranking (i.e., VulTeller), the improvement achieved in

description generation is relatively modest. We conjecture that

the attention mechanism can partially counteract the weakness

of unordered paths.

In summary, the size of CFG, taint analysis and path ranking

all have a positive impact on the performance of our approach.

When combining them together, we obtain the best results on

two tasks.

F. Human Evaluation

Previously, we use the automatic metrics to calculate

the similarity between generated descriptions and references.

However, such metrics are not perfect for measuring seman-

tic similarity because they are based on statistical analysis.

Therefore, we perform a human evaluation for an in-depth

measurement.

We invite 6 human evaluators with 2-5 years of software

security experience to assess the quality of vulnerability

descriptions generated by different approaches. Specifically,

we compare our approach VulTeller and two representative

baselines including Seq2seq and GraphCodeBert from each

group. We choose Seq2seq instead of CodeBert because Code-

Bert exhibits close performance with GraphCodeBert, which

makes it not distinguishable. We randomly select 100 function-

TABLE V
THE SCORE DISTRIBUTION OF GENERATED DESCRIPTIONS

Score 1 2 3 4 5 6 7 Avg
Seq2seq 16 18 17 16 11 10 12 3.66
GraphCodeBert 12 14 12 22 10 19 11 4.05
VulTeller 12 11 10 15 16 14 22 4.42

description pairs from the testing set for evaluation, where the

function contains the vulnerability and the description serves

as a reference. Then we fetch generated ones of the three

approaches and evenly divide them into two groups. Each

group is assigned to three different evaluators since the redun-

dancy can help obtain more consistent results. The generated

descriptions are randomly presented, thus an evaluator will

not be aware of which approach the description comes from.

The evaluators can give a score between 1 to 7 to measure

the semantic similarity between the generated description and

the reference, where 1 means “Not Similar At All” and 7

means “Highly Similar/Identical”. The higher score means

closer quality of generated description to the reference. For

each generated description, we get three scores from evaluators

and choose the median value as the final score.

The detailed scores of generated descriptions are shown

in Table V. We can see that our approach achieves the

best results and improves the average (Avg) score from 3.66

(Seq2seq), 4.05 (GraphCodeBert) to 4.42. Specifically, among

the randomly selected 100 samples, our approach can gen-

erate 22 highly similar or even identical descriptions with

the reference ones (score = 7), 36 good descriptions (score

≥ 6). Our approach also receives the smallest number of

negative results (score ≤ 3). Based on the 100 final scores

for each approach of Seq2Seq, GraphCodeBert and VulTeller,

we conduct Wilcoxon signed-rank tests [55]. Comparing our

approach with two baselines, the p-values of Wilcoxon signed-

rank tests at 95% confidence level are 2.5e-05 and 0.028

respectively, showing that the improvements achieved by our

approach are statistically significant. To sum up, the results

of human evaluation confirm the effectiveness of the proposed

approach.

G. Case Study

We present two cases of vulnerable functions with their

references and generated descriptions to discuss the superiority

and limitation of our model for description generation, which

is shown in Table VI. We add line comments “/*Vulnerable

statement*/” to point out the location. In the first case, the

function from MongoDB client aims to save history files on

the local storage. However, it simply opens a specified file

(i.e., “fopen()”) and writes data to it without checking the

permissions (i.e., “fprintf()”). This may lead to information

leakage when the data has sensitive content. Therefore, the

developer fixes it by adding conditional compilation state-

ments for example “#if” and “#else” around the vulnerable

statement. Among the generated descriptions of baselines, the

most similar key phrase is “writing data to a temporary file”.

But it neither presents what the vulnerability is nor explains

340

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on June 27,2024 at 03:18:41 UTC from IEEE Xplore. Restrictions apply.

TABLE VI
TWO CASES OF VULNERABLE C/C++ FUNCTIONS WITH THE DESCRIPTIONS. THE YELLOW HIGHLIGHTS ARE THE IMPORTANT INFORMATION FOR THE

VULNERABILITY, WHILE PINK AND RED HIGHLIGHTS INDICATE THE CLOSE OR IDENTICAL MEANING TO THE REFERENCE RESPECTIVELY.

CASE 1: CVE-2016-6494 CASE 2: CVE-2015-6817
i n t l i n e n o i s e H i s t o r y S a v e (c o n s t c h a r * f i l e n a m e)
{

/ * Vune rab l e s t a t e m e n t * /
FILE* fp = fopen (f i l e n a m e , ” wt ”) ;
i f (fp == NULL) {

r e t u r n −1;
}
f o r (i n t j = 0 ; j < h i s t o r y L e n ; ++ j) {

i f (h i s t o r y [j] [0] != ’\0 ’) {
f p r i n t f (fp , ”%s\n ” , h i s t o r y [j]) ;

}
}
f c l o s e (fp) ;
r e t u r n 0 ;

}

s t a t i c vo id s t a r t a u t h r e q u e s t (PgSocke t * c l i e n t
, c o n s t c h a r * username)

{
i n t r e s ;
PktBuf * buf ;
/ * Vune rab l e s t a t e m e n t * /
c l i e n t −>a u t h u s e r = c l i e n t −>db−>a u t h u s e r ;
c l i e n t −>poo l = g e t p o o l (c l i e n t −>db , c l i e n t

−>db−>a u t h u s e r) ;
i f (! f i n d s e r v e r (c l i e n t)) {

c l i e n t −>w a i t f o r u s e r c o n n = t r u e ;
r e t u r n ;

}
. . . (1 8 l i n e s more)

}
Reference: The client in MongoDB uses world-readable permissions
on .dbshell history files, which might allow local users to obtain sen-
sitive information by reading these files.

Reference: PgBouncer before VERIOSN, when configured with
auth user, allows remote attackers to gain login access as auth user
via an unknown username.

Seq2seq: Keepalived VERSION, did n’t check for pathnames with
symlinks when writing data to a temporary file upon a call to Printdata.

Seq2seq: The filesystem implementation in the FileInfo component
does not ensure that pix fmt is used for a remote advertisement’s
application.

Transformer: FILE in python before VERSION, has a length value
that only might allow an attacker to dereference during the client ’s
unsigned long key.

Transformer: The in the linux the block devices in the linux kernel
before VERSION, allows remote attackers to cause a denial of service.

CodeBert: Keepalived VERSION, did n’t check for pathnames with
symlinks when writing data to a temporary file upon a call to PrintData
or PrintStats.

CodeBert: Unspecified vulnerability in libpng before VERSION,
as used in Android VERSION, before VERSION, before VER-
SION...(twice more)

G2S: An issue was discovered in php before VERSION. There is an
uninitialized read in files.

G2S: An issue was discovered in libvncserver before VERSION, FILE
has a null pointer dereference.

GraphCodeBert: Integer overflow in FILE in Git, allows remote
attackers to cause a denial of service (application crash) via a crafted
file.

GraphCodeBert: PgBouncer before VERSION, allows remote attack-
ers to cause a denial of service (NULL pointer dereference and crash
) via unspecified vectors.

VulTeller: The FILE before VERSION does not verify that use of
the permissions on history files, allows local guest to read sensitive
information by reading these files.

VulTeller: A crafted authentication, which can cause a denial of service
(connection to crash) by sending a connection to client.

how it can be exploited. By contrast, VulTeller successfully

generates the symptom and cause, which goes a long way

towards understanding and fixing it. The reason behind this

is that our approach learns precise dependencies and treats

the missing control dependency (i.e., the condition evaluation)

along with data dependency (i.e., from source “FILE *p” to

sink “fprintf(fp, ...)”) as vulnerable.

Despite some progress, generating high-quality descriptions

automatically remains a great challenge, and our approach

has its own limitations. For example, in Case 2, almost all

the methods failed to generate important information about

the vulnerability related to malicious access control. Graph-

CodeBert correctly identified that the vulnerability originated

from PgBouncer, but reported an unrelated symptom (i.e.,

“denial of service”). Similarly, our approach predicted the

same symptom, though it did indicate the presence of a crafted

authentication. This bias may have stemmed from the absence

of external dependency information, such as the definition

of the PgSocket class and its members. Additionally, our

approach is insensitive to the value of a variable, which could

lead to incorrect predictions. These findings motivate us to

consider global dependency and dynamic information in our

future work and also highlight the need for more research to

address this challenging problem.

V. THREATS TO VALIDITY

Internal Validity. The internal threat is that the quality of

the functions along with the ground-truths (i.e., locations and

descriptions) may affect the effectiveness of our approach. In

particular, we treat lines that have control/data dependencies

on the added lines as vulnerable, which may not always be

the truth. As introduced, this practice is borrowed from the

baselines and thus the threat is minimized. Moreover, the

original description of a vulnerability may contain meaningless

words such as version numbers, and miss some details like the

cause and impact. To mitigate it, we have applied some rules

to normalize the versions and file paths. We will consider more

accurate heuristics in the future.
External Validity. We only collected vulnerabilities from

C/C++ projects to construct the dataset. It remains unknown

whether our approach will perform well in other programming

languages such as PHP and Python. However, it is widely

known that C/C++ projects produce more vulnerabilities be-

cause of their freedom on accessing system memory and foun-

dation for other programming languages. We will extend the

341

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on June 27,2024 at 03:18:41 UTC from IEEE Xplore. Restrictions apply.

diversity of our dataset in future. Besides, some of the base-

lines may not fit well on the tasks. Static analysis tools may

not achieve optimal performance in vulnerability localization

since they are limited to identifying vulnerable lines within

individual functions. We will explore automatic compilation

techniques to support the evaluation of more advanced tools.

For description generation, G2S is implemented based on the

parsed PDG instead of AST-based graph, which differs from it

in code summarization. But since it is important to capture de-

pendency information as prior work demonstrated, we believe

such a practice is reasonable. CodeBert and GraphCodeBert

are pre-trained on programming languages excluding C/C++,

which is not perfect for our dataset. To reduce the threat, we

fine-tune them on the dataset for better performance. We will

investigate other large pre-trained models to improve them in

the future.

VI. RELATED WORK

A. DL-based Vulnerability Discovery

Many studies have proposed deep learning-based ap-

proaches for discovering vulnerabilities from the source code,

including the granularity of function level and statement level.

At the function level (aka vulnerability detection), various

types of neural networks have been adopted to detect if a given

function is vulnerable by automatically learning vulnerability

features [7], [8], [9]. Though effective, these work is limited to

only notify developers the existence of vulnerability, without

the locations that are crucial for fixing it.

Therefore, recent work focuses more on the statement-

level vulnerability detection (i.e., vulnerability localization),

most of them fall into unsupervised learning. For example,

VulDeeLocator [11] extends a Bi-LSTM detector with an inner

multiply layer and predicts the vulnerable statements with the

output of the inner layer. Similarly, IVDetect [12] and LineVul

[56] train a vulnerability detector and then extract either sub-

graphs or attention weights from the trained model for locating

vulnerable statements. Due to the inconsistency between inner

features and the locations, the subsequent studies propose to

pinpoint vulnerable statements in a supervised manner. VEL-

VET [13] learns to rank vulnerable statements by combining

graph-based and sequence-based neural networks. LineVD

[14] formulates statement-level vulnerability detection as a

node classification task and leverages graph neural networks

with a transformer-based model over PDG for end-to-end

learning.

Compared to the above work, our VulTeller is a fully

supervised neural model for vulnerability localization and

focuses on control flows and taint flows to capture more

precise dependencies.

B. Code Document Generation

Inspired by the success of neural machine translation,

researchers also widely explore encoder-decoder neural net-

works to generate documents for code snippets, including but

not limited to source code summarization, [37], [47], [57],

code commit generation [45], [58]. For example, Ahmad et

al. [47] explores the Transformer model that uses a self-

attention mechanism and is attached with relative position

representations and copy attention to generate code comments.

Jiang et al. [45] adopt the standard attentional sequence-to-

sequence model that encodes the code changes and generates

their commit messages. Apart from these tasks, Liu et al. [59]

propose a sequence-to-sequence model with copy mechanism

and reinforcement learning to automatically generate pull

request descriptions based on the commit messages and the

added source code comments in the pull-requests. Hu et al.

[60] exploit the Transformer to generate user notice for smart

contract functions, so as to help end-users better understand

the smart contract and be aware of the financial risks.

Different from the ones outline above, we make the first step

towards automated vulnerability description generation, which

provides additional assistance for developers in understanding

the facts and potential hazards of vulnerabilities.

VII. CONCLUSION

This paper introduces a novel approach to automatically lo-

calize and generate descriptions for vulnerabilities using deep

learning. To address the challenge of capturing vulnerability

semantics, we propose VulTeller that converts the control flow

graph into control flow paths and incorporating taint analysis

to refine control dependencies and integrate data dependen-

cies, thereby avoiding the bottleneck of GNNs. We design

neural models based on these techniques to automatically

learn precise semantics for both tasks. We conduct extensive

experiments to evaluate the effectiveness of our approach,

and the results demonstrate the superior performance of our

models in both tasks compared to baseline models. Despite

these promising results, there is still space for improvement

before the approach can be applied in real-world scenarios.

Our work can be considered as an initial step towards

automated vulnerability diagnosis. In future, we expect re-

searchers will explore more advanced strategies to improve the

accuracy of both tasks. And we may also conduct studies to

investigate more information need of developers on diagnosing

vulnerabilities. The source code and experimental data are

available at https://github.com/zhangj111/VulTeller.

ACKNOWLEDGMENT

This work is supported by Nanyang Technological Uni-

versity (NTU)-DESAY SV Research Program under Grant

2018-0980. It is also supported by the National Research

Foundation, Singapore, and the Cyber Security Agency un-

der its National Cybersecurity R&D Programme (NCRP25-

P04-TAICeN) and the NRF Investigatorship NRF-NRFI06-

2020-0001. Any opinions, findings and conclusions or rec-

ommendations expressed in this material are those of the

author(s) and do not reflect the views of National Research

Foundation, Singapore and Cyber Security Agency of Singa-

pore. This work has also received partial support from the

National Key Research and Development Program of China

(No. 2022YFB4502003) and the National Natural Science

Foundation of China (No. 62072017).

342

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on June 27,2024 at 03:18:41 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] M. Shahzad, M. Z. Shafiq, and A. X. Liu, “A large scale exploratory
analysis of software vulnerability life cycles,” in 2012 34th International
Conference on Software Engineering (ICSE). IEEE, 2012, pp. 771–781.

[2] D. Mu, A. Cuevas, L. Yang, H. Hu, X. Xing, B. Mao, and G. Wang,
“Understanding the reproducibility of crowd-reported security vulnera-
bilities,” in 27th USENIX Security Symposium (USENIX Security 18),
2018, pp. 919–936.

[3] M. Fu, C. Tantithamthavorn, T. Le, V. Nguyen, and D. Phung, “Vulre-
pair: a t5-based automated software vulnerability repair,” in Proceedings
of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2022, pp. 935–
947.

[4] J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and H. R. Lipford, “Ques-
tions developers ask while diagnosing potential security vulnerabilities
with static analysis,” in Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, 2015, pp. 248–259.

[5] R. Croft, D. Newlands, Z. Chen, and M. A. Babar, “An empirical study of
rule-based and learning-based approaches for static application security
testing,” in Proceedings of the 15th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM), 2021, pp.
1–12.

[6] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in 2013 35th
International Conference on Software Engineering (ICSE). IEEE, 2013,
pp. 672–681.

[7] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
“Vuldeepecker: A deep learning-based system for vulnerability de-
tection,” in 25th Annual Network and Distributed System Security
Symposium, NDSS 2018, San Diego, California, USA, February 18-21,
2018, 2018.

[8] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vul-
nerability identification by learning comprehensive program semantics
via graph neural networks,” Advances in neural information processing
systems, vol. 32, 2019.

[9] Y. Wu, D. Zou, S. Dou, W. Yang, D. Xu, and H. Jin, “Vulcnn: An image-
inspired scalable vulnerability detection system,” in 44th IEEE/ACM
44th International Conference on Software Engineering, ICSE 2022,
Pittsburgh, PA, USA, May 25-27, 2022. ACM, 2022, pp. 2365–2376.

[10] J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and H. R. Lipford,
“How developers diagnose potential security vulnerabilities with a static
analysis tool,” IEEE Transactions on Software Engineering, vol. 45,
no. 9, pp. 877–897, 2018.

[11] Z. Li, D. Zou, S. Xu, Z. Chen, Y. Zhu, and H. Jin, “Vuldeelocator: a deep
learning-based fine-grained vulnerability detector,” IEEE Transactions
on Dependable and Secure Computing, 2021.

[12] Y. Li, S. Wang, and T. N. Nguyen, “Vulnerability detection with fine-
grained interpretations,” in Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2021, pp. 292–303.

[13] Y. Ding, S. Suneja, Y. Zheng, J. Laredo, A. Morari, G. E. Kaiser, and
B. Ray, “VELVET: a novel ensemble learning approach to automatically
locate vulnerable statements,” in IEEE International Conference on Soft-
ware Analysis, Evolution and Reengineering, SANER 2022, Honolulu,
HI, USA, March 15-18, 2022. IEEE, 2022, pp. 959–970.

[14] D. Hin, A. Kan, H. Chen, and M. A. Babar, “Linevd: Statement-level
vulnerability detection using graph neural networks,” in 19th IEEE/ACM
International Conference on Mining Software Repositories, MSR 2022,
Pittsburgh, PA, USA, May 23-24, 2022. ACM, 2022, pp. 596–607.

[15] U. Alon and E. Yahav, “On the bottleneck of graph neural networks
and its practical implications,” in International Conference on Learning
Representations, 2020.

[16] S. Liu, X. Xie, J. Siow, L. Ma, G. Meng, and Y. Liu, “Graphsearchnet:
Enhancing gnns via capturing global dependencies for semantic code
search,” IEEE Transactions on Software Engineering, 2023.

[17] J. Zhang, X. Wang, H. Zhang, H. Sun, X. Liu, C. Hu, and Y. Liu, “De-
tecting condition-related bugs with control flow graph neural network,”
in Proceedings of the 32nd ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2023, pp. 1370–1382.

[18] H. Assal and S. Chiasson, “’think secure from the beginning’ a survey
with software developers,” in Proceedings of the 2019 CHI conference
on human factors in computing systems, 2019, pp. 1–13.

[19] D. Votipka, K. R. Fulton, J. Parker, M. Hou, M. L. Mazurek, and
M. Hicks, “Understanding security mistakes developers make: Quali-
tative analysis from build it, break it, fix it,” in 29th USENIX Security
Symposium (USENIX Security 20), 2020, pp. 109–126.

[20] J. Newsome and D. X. Song, “Dynamic taint analysis for automatic
detection, analysis, and signaturegeneration of exploits on commodity
software.” in NDSS, vol. 5. Citeseer, 2005, pp. 3–4.

[21] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural net-
works,” IEEE transactions on Signal Processing, vol. 45, no. 11, pp.
2673–2681, 1997.

[22] K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk, and
Y. Bengio, “Learning phrase representations using rnn encoder-decoder
for statistical machine translation,” in Conference on Empirical Methods
in Natural Language Processing (EMNLP 2014), 2014.

[23] J. K. Siow, S. Liu, X. Xie, G. Meng, and Y. Liu, “Learning program
semantics with code representations: An empirical study,” in 2022
IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 2022, pp. 554–565.

[24] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings, 2017.

[25] Y. Li, D. Tarlow, M. Brockschmidt, and R. S. Zemel, “Gated graph
sequence neural networks,” in 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2016.

[26] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in International Conference on
Learning Representations, 2018.

[27] Joern, “Joern: The bug hunter’s workbench,” https://joern.io/.

[28] C. Flanagan and J. B. Saxe, “Avoiding exponential explosion: Gen-
erating compact verification conditions,” in Proceedings of the 28th
ACM SIGPLAN-SIGACT symposium on Principles of Programming
Languages, 2001, pp. 193–205.

[29] J. Zhang, X. Wang, H. Zhang, H. Sun, Y. Pu, and X. Liu, “Learning to
handle exceptions,” in Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, 2020, pp. 29–41.

[30] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and discover-
ing vulnerabilities with code property graphs,” in 2014 IEEE Symposium
on Security and Privacy. IEEE, 2014, pp. 590–604.

[31] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to
know about dynamic taint analysis and forward symbolic execution (but
might have been afraid to ask),” in 2010 IEEE symposium on Security
and privacy. IEEE, 2010, pp. 317–331.

[32] Y. W. Chow, M. Schäfer, and M. Pradel, “Beware of the unexpected:
Bimodal taint analysis,” arXiv preprint arXiv:2301.10545, 2023.

[33] F. Yamaguchi, C. Wressnegger, H. Gascon, and K. Rieck, “Chucky:
Exposing missing checks in source code for vulnerability discovery,”
in Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, 2013, pp. 499–510.

[34] K. Cho, B. van Merriënboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder–decoder approaches,”
in 8th Workshop on Syntax, Semantics and Structure in Statistical
Translation, SSST 2014. Association for Computational Linguistics
(ACL), 2014, pp. 103–111.

[35] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[36] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A novel
neural source code representation based on abstract syntax tree,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 783–794.

[37] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment genera-
tion,” in Proceedings of the 26th conference on program comprehension,
2018, pp. 200–210.

[38] D. Bahdanau, K. H. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in 3rd International Conference
on Learning Representations, ICLR 2015, 2015.

[39] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” in Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing,
2015, pp. 1412–1421.

[40] J. Fan, Y. Li, S. Wang, and T. N. Nguyen, “Ac/c++ code vulnerability
dataset with code changes and cve summaries,” in Proceedings of the

343

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on June 27,2024 at 03:18:41 UTC from IEEE Xplore. Restrictions apply.

17th International Conference on Mining Software Repositories, 2020,
pp. 508–512.

[41] S. Lipp, S. Banescu, and A. Pretschner, “An empirical study on the
effectiveness of static c code analyzers for vulnerability detection,” in
Proceedings of the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2022, pp. 544–555.

[42] H. Liu, S. Chen, R. Feng, C. Liu, K. Li, Z. Xu, L. Nie, Y. Liu, and
Y. Chen, “A comprehensive study on quality assurance tools for java,”
in Proceedings of the 32nd ACM SIGSOFT International Symposium on
Software Testing and Analysis, ser. ISSTA 2023, 2023, p. 285–297.

[43] Facebook, “Infer: A tool to detect bugs in java and c/c++/objective-c
code,” https://fbinfer.com/.

[44] G. S. Lab, “Codeql,” https://securitylab.github.com/tools/codeql.

[45] S. Jiang, A. Armaly, and C. McMillan, “Automatically generating
commit messages from diffs using neural machine translation,” in
2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2017, pp. 135–146.

[46] A. Svyatkovskiy, S. K. Deng, S. Fu, and N. Sundaresan, “Intellicode
compose: Code generation using transformer,” in Proceedings of the
28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2020, pp.
1433–1443.

[47] W. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “A transformer-
based approach for source code summarization,” in Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics,
2020, pp. 4998–5007.

[48] A. LeClair, S. Haque, L. Wu, and C. McMillan, “Improved code
summarization via a graph neural network,” in Proceedings of the 28th
international conference on program comprehension, 2020, pp. 184–195.

[49] Y. Wang, Y. Dong, X. Lu, and A. Zhou, “Gypsum: learning hybrid
representations for code summarization,” in Proceedings of the 30th
IEEE/ACM International Conference on Program Comprehension, 2022,
pp. 12–23.

[50] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming
and natural languages,” in Findings of the Association for Computational
Linguistics: EMNLP 2020, 2020, pp. 1536–1547.

[51] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan,
A. Svyatkovskiy, S. Fu, M. Tufano, S. K. Deng, C. B. Clement,
D. Drain, N. Sundaresan, J. Yin, D. Jiang, and M. Zhou, “Graphcodebert:
Pre-training code representations with data flow,” in 9th International
Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021, 2021.

[52] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of the 40th
annual meeting of the Association for Computational Linguistics, 2002,
pp. 311–318.

[53] C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,”
in Text summarization branches out, 2004, pp. 74–81.

[54] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[55] F. Wilcoxon, S. Katti, and R. A. Wilcox, “Critical values and probability
levels for the wilcoxon rank sum test and the wilcoxon signed rank test,”
Selected tables in mathematical statistics, vol. 1, pp. 171–259, 1970.

[56] M. Fu and C. Tantithamthavorn, “Linevul: a transformer-based line-
level vulnerability prediction,” in Proceedings of the 19th International
Conference on Mining Software Repositories, 2022, pp. 608–620.

[57] J. Zhang, X. Wang, H. Zhang, H. Sun, and X. Liu, “Retrieval-based
neural source code summarization,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, 2020, pp.
1385–1397.

[58] Z. Liu, X. Xia, A. E. Hassan, D. Lo, Z. Xing, and X. Wang, “Neural-
machine-translation-based commit message generation: how far are we?”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, 2018, pp. 373–384.

[59] Z. Liu, X. Xia, C. Treude, D. Lo, and S. Li, “Automatic generation
of pull request descriptions,” in 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2019,
pp. 176–188.

[60] X. Hu, Z. Gao, X. Xia, D. Lo, and X. Yang, “Automating user notice
generation for smart contract functions,” in 2021 36th IEEE/ACM

International Conference on Automated Software Engineering (ASE).
IEEE, 2021, pp. 5–17.

344

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on June 27,2024 at 03:18:41 UTC from IEEE Xplore. Restrictions apply.

