VulAdvisor: Natural Language Suggestion Generation for
Software Vulnerability Repair

Jian Zhang Chong Wang” Anran Li
Nanyang Technological University Nanyang Technological University Yale University
Singapore Singapore USA
jlan_zhang@ntu.edu.sg chong.wang@ntu.edu.sg anranli@yale.edu
Wenhan Wang Tianlin Li Yang Liu
University of Alberta Nanyang Technological University Nanyang Technological University

Canada Singapore Singapore

wenhanl12@ualberta.ca tianlin001@e.ntu.edu.sg yangliu@ntu.edu.sg

ABSTRACT

Software vulnerabilities pose serious threats to the security of mod-
ern software systems. Deep Learning-based Automated Vulnera-
bility Repair (AVR) has gained attention as a potential solution
to accelerate the remediation of vulnerabilities. However, recent
studies indicate that existing AVR approaches often only generate
patches, which may not align with developers’ current repair prac-
tices or expectations. In this paper, we introduce VulAdvisor, an
automated approach that generates natural language suggestions
to guide developers or AVR tools in repairing vulnerabilities. Vu-
1Advisor comprises two main components: oracle extraction and
suggestion learning. To address the challenge of limited historical
data, we propose an oracle extraction method facilitating ChatGPT
to construct a comprehensive and high-quality dataset. For sugges-
tion learning, we take the supervised fine-tuning CodeT5 model as
the basis, integrating local context into Multi-Head Attention and
introducing a repair action loss, to improve the relevance and mean-
ingfulness of the generated suggestions. Extensive experiments on
a large-scale dataset from real-world C/C++ projects demonstrate
the effectiveness of VulAdvisor, surpassing several alternatives in
terms of both lexical and semantic metrics. Moreover, we show that
the generated suggestions enhance the patch generation capabili-
ties of existing AVR tools. Human evaluations further validate the
quality and utility of VulAdvisor’s suggestions, confirming their
potential to improve software vulnerability repair practices.

CCS CONCEPTS

« Software and its engineering — Software maintenance tools;
Software testing and debugging.

KEYWORDS

vulnerability repair, large language models, suggestion generation,
program repair

“Corresponding author.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASE °24, October 27-November 1, 2024, Sacramento, CA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1248-7/24/10.

https://doi.org/10.1145/3691620.3695555

ACM Reference Format:

Jian Zhang, Chong Wang, Anran Li, Wenhan Wang, Tianlin Li, and Yang
Liu. 2024. VulAdvisor: Natural Language Suggestion Generation for Soft-
ware Vulnerability Repair. In 39th IEEE/ACM International Conference on
Automated Software Engineering (ASE "24), October 27-November 1, 2024,
Sacramento, CA, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/
10.1145/3691620.3695555

1 INTRODUCTION

Software vulnerabilities are a type of weakness or flaw that can be
introduced at any stage of the software life cycle, such as during
the design, coding, and maintenance phases, making it exploitable
by attackers [24, 43]. When exploited, vulnerabilities can lead to
a negative impact on the confidentiality, integrity, or availability
of data and systems [1]. Despite considerable efforts to enhance
software security, new vulnerabilities continually emerge in mod-
ern software. For example, the number of exposed vulnerabilities
recorded by the National Vulnerability Database (NVD) [3] grows
rapidly and already exceeds two hundred thousand, let alone the
ones that have not been publicly disclosed or remain unknown.
Such a fact highlights the urgent need of automatic techniques for
accelerating the remediation of vulnerabilities, as attackers may al-
ready be aware of them and exploiting them for malicious purposes
(e.g., the Heartbleed attack [2]).

To this end, some recent studies propose DL-based approaches
for automated vulnerability repair by learning from the vulnerability-
fix pairs, based on traditional neural models or large language mod-
els (LLMs) [6, 12, 14, 33, 69]. For example, Chen et al. [6] introduced
VRepair based on transfer learning to deal with the problem of insuf-
ficient vulnerability data. VRepair first trained a Transformer model
on a large bug fix corpus and then transferred it to a vulnerability
fix dataset for patch generation. As a representative of LLM-based
approach, VulRepair [12] fine-tunes a pre-trained model CodeT5
on real-world vulnerability fixes to generate patches for given vul-
nerable functions, and shows promising results for vulnerability
fixing at a large scale.

However, existing vulnerability repair approaches primarily fo-
cus on generating patches, which may not fully meet the needs of
developers. First, developers worry about incurring high mainte-
nance costs, particularly if the generated patches are often unclear
or incorrect [36, 47]. Unfortunately, even with the use of perfect


https://doi.org/10.1145/3691620.3695555
https://doi.org/10.1145/3691620.3695555
https://doi.org/10.1145/3691620.3695555

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

Suggestion:

+ Add a check to ensure that the file returned by the
files_lookup_fd_rcu function is the same as the one returned
by the files_lookup_fd_raw function. 1l

E> « Ifthey are not the same, the file is released using the !

fput_many function and the loop is restarted. 1

« This prevents a race condition where a file descriptor could H
be reused by another process, leading to a use-after-free
vulnerability.

%=

static struct file *__fget_files(struct files_struct *files,
unsigned int fd, fmode_t mask, unsigned int refs)
{ 3
file = files_lookup_fd_rcu(files, fd);
if (file) {

struct file *file;
reu_read_lock();

if (file->f_mode & mask)

i
fille = files_lookup_fd_rcu(files, fd); ! file = NULL;
if (file) @y else if (1get_file_rcu_many(file, refs))

file = NULL; else if (files_lookup_fd_raw(files, fd) I= file) {

else if ('get_file_rcu_many(file, refs))
goto loop;

fput_many(file, refs);
goto loop;

3
reu_read_unlock();

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
H return file;
'

]
1
i
i
1
1
1
1
1
1
i
! H
: 1
if (file->f_mode & mask) VAN goto loop; !
1 :
. :
1
i
i
1
1
1
1
1
i

Figure 1: An illustrative example of suggestion generation
for vulnerability repair from CVE-2021-4083.

localization, the performance of current AVR tools remains subop-
timal, with success rates often below 20% [12, 69]. Second, recent
studies [5, 55] indicate a strong preference among developers to
remain involved in the repair process by manually crafting patches,
rather than relying on fully automated solutions. This preference
is mainly due to trust issues with automatically generated patches.
Therefore, it is crucial not only to improve the quality of vulnera-
bility patches but also to provide supplementary information that
aids developers in the vulnerability fixing process.

In this paper, we propose to facilitate developers repair software
vulnerability by automatically generating suggestions for it, namely
VulAdvisor. Instead of solely providing subjects with automatically
generated patches, our approach is developer-centric that provides
suggestions in the form of natural language. As illustrated in Figure
1, suppose there is a function __fget_files reported to be vulnerable
by vulnerability detection tools or users, the developer should ad-
dress the vulnerability from scratch, as no information is provided
regarding where or how to implement the patch. As mentioned
previously, at this stage, it is beneficial to suggest the developer
the steps to fix the vulnerability and the potential reason behind
it. When given the generated suggestion, it is clearer that one
should check the consistency of returned files and the raw file by
files_lookup_fd_rcu and files_lookup_fd_raw function calls respec-
tively. Furthermore, we can explain the way the provided patches
related to the vulnerability, that is, to prevent a race condition. As
such, the developer can successfully repair the vulnerability with
low manual effort and maintenance cost. Inspired by the success
of Large Language Models (LLMs), we design VulAdvisor, which
consists of two main components: Oracle Extraction and Sugges-
tion Learning. These components are based on ChatGPT [38] and
CodeT5 [53], respectively.

Oracle Extraction. One fundamental challenge in automating
suggestion generation is the scarcity of sufficient historical data. A
straightforward approach to obtain oracles (i.e., ground truths) is to
simply prompt ChatGPT with, "How to fix the vulnerability in the
following function? <code>". However, devising repair steps for vul-
nerabilities requires deep domain knowledge, a challenge even for
experienced security experts [51]. Therefore, expecting ChatGPT
to independently generate viable suggestions is impractical. To ad-
dress this, we gather historical patches from CVE/NVD and prompt

Jian Zhang, Chong Wang, Anran Li, Wenhan Wang, Tianlin Li, and Yang Liu

ChatGPT to summarize how the vulnerability was fixed based on
its patch commit. This task is much easier for ChatGPT due to its
human-like proficiency in code and text summarization [31, 48].
Afterwards, we revert the commit to obtain its corresponding vul-
nerable function and post-process the summary into a suggestion.
This approach allows us to build a comprehensive dataset with
high-quality samples by extracting pairs of vulnerable functions
and their repair suggestions.

Suggestion Learning. We formulate the problem of suggestion
generation as a sequence-to-sequence problem. We introduce a
neural model based on CodeT5, which has demonstrated its effec-
tiveness in vulnerability repair [12, 69]. By fine-tuning CodeT5 on
our curated dataset, the model encodes the vulnerable function and
employs its decoder to generate suggestions. Nevertheless, there
are still two aspects for improvement. On the side of vulnerable
function, LLMs can sometimes neglect local context, leading to
suggestions that include irrelevant information (e.g., nonexistent
variables) [35, 44]. Therefore, we design a localness-based attention
mechanism inspired by the localness of source code [50]. We apply
the Vector Space Model (VSM) to identify locally specific terms
(such as variables) within the function and compute their TF-IDF
weights. These weights are then used to increase their awareness
in Multi-Head Attention, encouraging it to adhere to the local con-
text of the code. On the other side of suggestion, the words can
have different impacts on the repair behavior. Intuitively, repair
actions comprising predicates and their objects represent the back-
bone of the suggestion, making them much more meaningful than
common words. To highlight their importance while maintaining
fluency, we design a repair action loss that additionally considers
the loss of repair action words during fine-tuning. Notably, these
two strategies are only used for guiding the learning of the base
LLM. During inference, the fine-tuned model can be directly used
for generating suggestions without these strategies, making it a
reusable foundation for further improvement.

We build a large-scale dataset by collecting pairs of vulnera-
bility and its suggestion with our oracle extraction method from
real-world C/C++ projects. Our initial step involved a manual in-
spection of this dataset, revealing that approximately 96.9% of the
ground-truth suggestions are of high quality. This encouraging find-
ing prompted us to undertake extensive experiments to thoroughly
evaluate our approach. We consider a variety of popular text genera-
tion approaches as baselines. In addition to the lexical and semantic
metrics such as BLEU, ROUGE, and BERTScore, we propose a Re-
pair Action Score (RAS) for evaluation. The experimental results
demonstrate that VulAdvisor significantly outperforms the base-
lines across all metrics. Furthermore, we explored the usefulness
of the generated suggestions by integrating them into VulRepair,
observing a notable enhancement (e.g., 5.1% of EM) in patch gen-
eration. We also conduct a human evaluation to assess the quality
and practical utility of generated suggestions, and the results fur-
ther confirm the effectiveness of VulAdvisor. In summary, the main
contributions of this work are as follows:

e We formulate a new problem of automated suggestion gener-
ation for vulnerability repair and propose a novel method for
building the dataset. To the best of our knowledge, this is the
first work that aims to generate natural language suggestions



VulAdvisor: Natural Language Suggestion Generation for Software Vulnerability Repair

for fixing the vulnerabilities, which can help the process of
vulnerability repair from a developer’s perspective.

e We propose a novel LLM-based approach for generating
vulnerability repair suggestions. The approach consists of
a localness-based attention mechanism that augments the
CodeT5 model with additional local context for relevance,
and a repair action loss that focuses on learning meaningful
words.

e We provide a large-scale dataset consisting of over 18k of
vulnerability-suggestion pairs from real-world C/C++ projects
and conduct extensive experiments on it. The evaluation
demonstrates the effectiveness of our approach in terms of
four automatic metrics and human evaluation results.

2 PROBLEM AND PRELIMINARY
2.1 Problem Definition

Our objective is to automatically generate suggestions that provide
guidance for fixing newly disclosed vulnerabilities. Additionally,
we aim to facilitate their understanding of the solutions, particu-
larly when they may lack expertise in security matters. Therefore,
we formulate the problem of vulnerability repair suggestion, which
involves recommending practical solutions for software vulnera-
bilities from a developer’s perspective. We formally define it as
follows.

Vulnerability Repair Suggestion. Let C = (c,¢z,...,cx) de-
motes the source code of a vulnerable function, where c;,i € [1,K]
are the tokens in the function. The input of this task is the sequence
of tokens ¢; to cx containing vulnerable elements. The target is
to learn a generator ¥ : C — S that generates the suggestion
S = (51,2, .. .,5L) in the mixed form of natural language and code
elements. Here C and S represent all vulnerable functions and sug-
gestions respectively. The generated suggestion should be able to
guide the repair of the vulnerability in ¢, and explain the possible
reason behind the modification if necessary. Here s; is the i-th token
in the generated sequence of length L.

2.2 Use Scenarios

2.2.1 Providing Developer Guidance. The problem is grounded on
the hypothesis that the vulnerable function has been identified
either by a static detector or reported by the user, but with limited
detailed information available. Consequently, fixing the vulnerabil-
ity often requires cumbersome manual effort. By providing targeted
suggestions for the detected vulnerability, developers can not only
follow the steps to successfully repair it, but also gain insight into
the fix and easily verify the soundness of the suggestions. Moreover,
our defined problem is readily applicable to other scenarios. For
instance, when additional clues such as error messages or stack
traces at the trigger point are available, we can incorporate them
as joint inputs to generate more refined suggestions.

2.2.2 Improving DL-based AVR Tools. Existing DL-based Auto-
mated Vulnerability Repair (AVR) tools typically assume perfect
fault localization, where the vulnerable function and all locations
for modification are given. While effective, this assumption does not
align with the reality faced by developers. In fact, when provided
with only the function to be fixed, the performance of these tools

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

can drop significantly [30, 37]. Also, the complexity of vulnerability
repair makes it challenging to learn accurate patches due to the
lack of clear guidance on repair direction. To help bridge this gap,
we can leverage generated suggestions that specifically identify
faulty elements and describe how they can be fixed. We believe that
such information is valuable for LLMs, guiding them to enhance
the quality of patches. The effectiveness of this approach will be
evaluated in our study.

3 APPROACH

3.1 Overview

As mentioned earlier, we aim to create a synergy between au-
tomated methods and developer insights, ultimately leading to
more effective and reliable vulnerability patching solutions. To
this end, our approach is developer-centric that generates easy-to-
understand suggestions for vulnerability repair (we name it Vu-
lAdvisor). The architecture of VulAdvisor consists of two main
modules: oracle extraction and suggestion learning. On the one hand,
since there is no existing dataset available for training neural net-
works, we propose an oracle extraction method to prepare the
vulnerable functions and the corresponding suggestions based on
the vulnerability patch commits and ChatGPT respectively. On the
other hand, when we obtain sufficient pairs of data described above,
we adopt a popular encoder-decoder LLM of code (i.e., CodeT5)
to automatically learn the semantics of vulnerability and generate
the suggestions in the mixed form of natural language and code
elements. In addition to fine-tuning CodeT5, we enhance the model
by incorporating localness context and employ a repair action loss
to improve the quality of the generated suggestions.

3.2 Oracle Extraction

In general, although LLMs of code are pre-trained and capable of
learning fundamental knowledge related to software bugs and vul-
nerabilities, their performance in program repair tasks greatly ben-
efits from high-quality data for fine-tuning and adaptation [12, 19].
However, different from patch generation where the historical vul-
nerability fixes can be easily collected, to date, there still lacks
of existing data specific for suggestion generation. Initially, our
approach involved merely using the commit message of a patch
as the basis for generating suggestions, assuming that it would
fully describe the changes made to fix the vulnerability. While in
practice, previous studies have revealed that the quality of commit
messages varies due to a lack of motivation or time, for example,
nearly 66% of the messages are not informative and contained only
afew words [9, 49]. Given the remarkable capabilities demonstrated
by ChatGPT, a promising solution is to directly prompt ChatGPT by
asking it how to fix the vulnerability. Unfortunately, the truth is that
fixing vulnerabilities requires substantial domain knowledge, far be-
yond simply understanding the intention of the code. Consequently,
ChatGPT cannot complete such a highly challenging task. Upon
analyzing some of the results, we observed that ChatGPT tended to
propose multiple best practices for security development, even if
they were not directly relevant to fixing the specific vulnerability
(more details will be presented in Section 4).



ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

Jian Zhang, Chong Wang, Anran Li, Wenhan Wang, Tianlin Li, and Yang Liu

git revert

Source

CVE patch commit

Figure 2:

'
static struct file *__fget_files(struct files_struct *files,
H unsigned int fd, fmode_t mask, unsigned int refs)

Given the patch commit
for the CVE, briefly
summarize how the
vulnerability was fixed.
<commit>

The vulnerability was
fixed by adding a check
to ensure that the file
returned by the files...

Prompting ChatGPT

Vulnerable
Function

;
LT

Suggestion

Post-processing

The workflow of oracle extraction.

LR

{
struct file *file;
rcu_read_lock();

(o

Self- Attentlon N

b) ) i)

Decoder Layer N
Cross-Attention |

D )

loon: 0.285

file = files_lookup_fd_rcu(files, fd);

Causal Self-Attention |

if (file) {

file = NULL;

Sel Attenuon 2

Vz

@ )

Decoder Layer 1

else if (Iget_file_rcu_many(file, refs)) get file

Cross-Attention

Zrcum 0759

goto loop;

[
(@

b)

Self- Attenuon 1
v. vy

==
|

. . . ] Causal Self-Attention \

rcu_read_unlock();

i
]

]

i

i

]

i

i

]

'

. if (file->f_mode & mask)
i

]

i

i

]

]

:

H return file;

i

i k2
i 0

i i

i i

i i

i | any ﬂ
i i v

] 1 i

i i

i i

i i

i i

) )

Standard Loss

) £ £ @@iiié}:

Vulnerable Function TFIDF Scores

Fine-Tuning with Localness-based Attention and Repair Action Loss

Figure 3: The framework of our suggestion learning approach.

In order to facilitate ChatGPT in providing useful suggestions as
an oracle!, we transform the problem into a summarization task. Fig-
ure 2 illustrates the process of oracle extraction based on ChatGPT.
Specifically, we first collect a large number of vulnerability patch
commits from open-source repositories according to CVE/NVD
records. For simplicity, we use commit to represent them. Instead
of expecting ChatGPT to come up with a solution from scratch, a
specific and effective prompt is designed: “Given the patch commit
for the CVE, briefly summarize how the vulnerability was fixed. <com-
mit>". The rationale behind this prompt is that developers often
can easily understand how a vulnerability was fixed according to
the code changes and commit message [18], similar to the concept
of the "Monday morning quarterback". In this way, we enable Chat-
GPT to focus on describing the changes and providing reasoning
for the fixes. By transforming the problem into a summarization
task and utilizing the commit information as input, ChatGPT is en-
couraged to concentrate solely on the changes made to address the
vulnerability. As a result, it can generate well-crafted summaries
that describe the essence of the vulnerability fixes.

After performing fix summarization, we revert the patched ver-
sion to the previous one, and extract the vulnerable function from
it. Then we further refine the summary into a suggestion using
post-processing. The summary typically (in 99.4% of cases) starts
with the phrase “The vulnerability was fixed by", which is not in-
formative and has a negative impact on the evaluation. Hence, we
remove the introductory phrase and lemmatize the verb following
it. Additionally, we replace the past tense with the present tense to

n this paper, we use ‘oracle’ and ‘ground-truth’ interchangeably.

enhance the readability of the suggestion. Through these adjust-
ments, we have curated a dataset suitable for training models to
generate vulnerability fix suggestions.

3.3 Suggestion Learning

Although various LLMs exist for code-related tasks, we align with
recent works in vulnerability repair by choosing CodeT5 [12, 52].
This decision is based on CodeT5’s advantageous balance of ef-
fectiveness and efficiency in this domain. We can fine-tune it on
our dataset by encoding the vulnerable function and decoding it to
generate the suggestion. Though effective to some extent, such a
practice still has two limitations. First, from the NLP community,
there is evidence that LLMs are prone to overlook context [35, 44],
and thus yield irrelevant content. We expect that the generated
text should match with the original relations and facts in the local
context, for example, the variables suggested for repair. It goes
beyond mere accuracy of a model’s performance, but concerns the
validity and reliability of its suggestion process, which is crucial
for building a developer-centric tool [23, 56]. Second, the standard
cross-entropy loss in the fine-tuning phase assigns equal training
weights to all target tokens without considering their semantic
importance. This approach can undervalue words that significantly
contribute to the overall semantic correctness. Intuitively, words
that predominantly determine the repair behavior of a vulnerability
(e.g., “Add check”) carry crucial semantic information. However,
these important tokens may be underrepresented when minimizing
the loss, resulting in generated suggestions that may lack meaning-
fulness and effectiveness in addressing the vulnerability.



VulAdvisor: Natural Language Suggestion Generation for Software Vulnerability Repair

For localness-based attention, we begin by computing TF-IDF
scores of terms using a Vector Space Model (VSM). We then map
these scores to the subtokens of the input and increase the weights
in both the Self-Attention and Cross-Attention mechanisms. This
enhancement aims to improve the model’s focus on local context.
In terms of the repair action loss, we identify repair action words
in the suggestion and map them into subwords. We then calculate
a weighted sum with the original sentence and these subwords to
compute the loss for updating the model. This approach helps the
model learn from repair actions, improving its ability to suggest
effective repairs for vulnerable functions.

Now we describe the process of supervised fine-tuning CodeT5
with the two strategies for the task of vulnerability repair sugges-
tion. CodeT5 uses an encoder-decoder Transformer framework,
where the encoder processes the vulnerable function, and the de-
coder generates the suggestion. The encoder/decoder stack con-
sists of multiple pre-trained attentional layers, each refining the
contextual information by attending to different parts of the in-
put. For illustration purposes, we denote the supervised dataset as
D = {(c, si)}fil of size N examples.

3.3.1 Localness-Based Attention. The localness of source code is
originally introduced by Tu et al. [50], where human-written pro-
grams are localized and have useful local regularities (e.g., endemic
and specific n-grams) that can be captured and exploited. Therefore,
emphasizing such local context may contribute to the improvement
of LLMs for generating more faithful tokens, since they tend to
ignore the context as discussed above. Similarly, researchers also
found that programmers usually focus on a list of keywords when
reading and understanding code [41]. Inspired by these studies, we
propose to enrich the localness of a vulnerable function through
the VSM to select keywords/terms from it.

We use the Term Frequency-Inverse Document Frequency (TF-
IDF) algorithm to achieve the goal. Specifically, we treat functions
as documents and keyword tokens (e.g., variable names, function
calls) as terms. TF-IDF gives higher importance to terms that appear
frequently within a function but are relatively rare across the entire
corpus (i.e., all functions). This helps to identify keywords in locality.
Formally, given a vulnerable function ¢ = (cy,c2,...,ck), TFIDF
weight for term ¢; in the function ¢, denoted as tfidf(c;, ), can be
computed using the following formula:

count(c;, ¢)

tidf(c;, ¢) =
' 25.(:1 count(cj, c)

N
8 (df(e») 0

where count(c;, ¢) is the number of occurrences of token ¢; in func-
tion ¢, N is the total number of functions in the corpus, and df(c;)
is the number of functions containing token c;.

When we obtain the TF-IDF weights for the tokens in C, we map
them to the subtokens from BPE of CodeT5. For example, in Figure
3, the term “fmode_t" will be split into subtokens of “f”, “mode”, and
“ t”, all of which will have the same score of 0.396. We denote the
subtoken sequence of ¢ as x, and let My = (My,1, Myx2,..., My ")
be the TF-IDF weights for these subtokens. To incorporate the
localness-based attention mechanism into our model, we modify
the multi-head attention mechanism in CodeT5. Let Qe, Ke, and Ve
be the query, key, and value matrices, respectively, for the origi-
nal multi-head attention. For each encoder stack, we compute the

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

updated attention value matrices V;, as follows:

V/, = softmax (% + aMx) Ve ®)
die

where dj is the dimension of the key vectors, and My is a row
vector containing the TF-IDF weights for each subtoken in x. The
factor « is introduced to control the alignment of the original atten-
tion scores. The softmax operation is applied along the subtoken
dimension to ensure that the attention weights sum to 1 for each
head.

Typically, the pretrained encoder has T stacks, and we denote the
output of the final stack as V’,, 7. Similarly, the enhanced attention
weights of cross-attention V(’1 of the decoder are computed as:

QaKy4T
Vi

By incorporating the localness-based attention mechanism using
TF-IDF weights, the model is encouraged to focus more on the lo-
cally specific terms within the vulnerable function, thus improving
the hidden states V' ; and its ability to generate repair suggestions
that adhere to the local context of the code.

V}; = softmax +aMy | Ve T (3)

3.3.2  Repair Action Loss. When optimizing the model, instead of
using the standard cross-entropy loss, we propose a repair action
loss to cater to the repair actions for improving the meaningfulness
of generated suggestions. We define a Repair Action (RA) as a
specific operation or modification in a suggestion that represent the
minimal unit of change to address a vulnerability of the code. Repair
actions typically consist of verbs (actions) and their corresponding
objects (entities affected by the actions), such as variable names,
function calls, or specific code snippets.

Algorithm 1 Identifying Repair Actions in Suggestions

Require: word_ids: The map for the original words and subwords
from BPE.
Ensure: ra_mask: Mask indicating positions of repair actions.
1: doc < POS of the suggestion
2: for all token € doc do
3 if token.pos_ = VERB then

4: verb_idx <« token.i

5 for all child € token.children do

6: if child.dep_ € {dobj, iobj, pobj, nsubjpass} then
7 obj_idx « child.i

8: verb_tokens « []

9: obj_tokens « []

10: for all idx, word_id € enumerate(word_ids) do
11: if word_id = verb_idx then

12: verb_tokens.append(idx)

13: else if word_id = obj_idx then

14: obj_tokens.append(idx)

15: for all vt € verb_tokens do

16: ra_mask[vt] « 1

17: for all ot € obj_tokens do

18: ra_mask[ot] « 1

19: return ra_mask




ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

Algorithm 1 outlines the process of identifying repair actions
and creating their masks from given suggestions. The algorithm
begins by analyzing the part-of-speech (POS) of each token in
the input suggestion. For tokens identified as verbs, the algorithm
examines their children to find the object of the verb. In Line 6,
dobj refers to the direct object, iobj to the indirect object, and pobj
to the prepositional object. We also consider nsubjpass (passive
nominal subject), which represents the noun or noun phrase that
acts as the subject in a passive voice construction. It then maps
the indices of these verb and object tokens to their corresponding
positions in the Byte Pair Encoding (BPE) subwords, using a word
IDs mapping (Lines 10-14). This process creates a mask (‘ra_mask’)
that highlights the positions of these identified repair actions in
the suggestion (Lines 15-18).

Next, we incorporate this repair action mask into the loss func-
tion to prioritize the correct generation of these important elements.
The repair action loss Lra is computed as:

L
Lra =-— Z ra_mask; log P(yily<i) 4)
i=1
where L is the length of the generated sequence, ra_mask; is the
repair action mask value for the i-th token, and P(y;) is the proba-
bility of the i-th token in the generated sequence and is calculated
based on the contextual representation of V7.
The final loss function is a weighted sum of the repair action loss
(LRra) and the standard cross-entropy loss (Lcg). The combined
loss is calculated as:

Lnar=A- Lra+(1-21) - Lcg

where A is a hyperparameter that controls the balance between the
two losses. By incorporating the repair action loss, our model is
incentivized to optimize the words that can better represent the
suggestion for repairing the vulnerability, thereby improving the
general quality.

4 EVALUATION
4.1 Dataset

4.1.1 Dataset Construction. To automate the task of vulnerability
repair suggestion and evaluate our approach, we curated a large-
scale dataset consisting of pairs of vulnerable functions and corre-
sponding suggestions based on CVEs and open-source projects. To
begin, we crawled all the CVEs up to the year 2023 and selected
those with a patch containing C/C++ files. We parsed the file before
the fixed version to extract the vulnerable functions and extracted
the fixed functions from the patch files. Using "git diff," we analyzed
the code changes between the two functions, referred to as diff's.
We excluded instances where the vulnerable function could not be
found in the fixed version to maintain dataset quality. In total, we
obtained 35,699 diff's.

To further enhance the data quality, we filtered out duplicated
or very short vulnerable functions (i.e., less than 5 lines), resulting
in 20,867 diff s remaining. The short functions include those consist
of one or two single statements or a single-line control structure
within the function body. These functions typically span 3 or 4
lines and are generally easy for developers to understand. Conse-
quently, developers may not use a tool for repair suggestions in

Jian Zhang, Chong Wang, Anran Li, Wenhan Wang, Tianlin Li, and Yang Liu

these straightforward cases. Next, we prepared ground-truth sug-
gestions using our oracle extraction method outlined in Section 3.2.
For this purpose, we utilized the API of ChatGPT 2 (gpt-3.5-turbo),
as it already met our quality needs. Nevertheless, this approach
leaves room for future exploration and potential improvements
using GPT-4. We ignored those responses that indicate an error
(e.g., Timeout). Then we handled and discarded those only sum-
marize line comment changes to clean the returned summaries as
suggestions, and paired them with the corresponding vulnerable
functions.

As a result, we constructed a dataset comprising 18,517 pairs of
vulnerable functions and suggestions. On average, both sides of
the pairs contain 267 and 55 tokens, respectively. The total number
of sub-word tokens for the prompt and completion is 21,155,861,
incurring a charge of approximately 35.96%. It is worth noting that
our dataset not only has a larger volume of vulnerability samples
compared to existing resources like BigVul [10], but it also repre-
sents the first artifact of its kind, providing a valuable resource for
the automation of vulnerability fix suggestions.

4.1.2  Quality Assessment. One key concern for us was the qual-
ity of the constructed dataset. To investigate this, we conducted
a statistically representative random sample of 384 data points,
achieving a 95% confidence level with a 10% confidence interval.
Subsequently, two of the authors manually inspected each sample
and categorized them as ‘poor, ‘fair, ‘good, or ‘excellent’ based on
the informativeness and naturalness. The assessment criteria are
threefold, evaluating whether the suggestion accurately: 1) identi-
fies the vulnerable code elements, 2) offers practical repair steps,
and 3) explains the rationale behind the solution if necessary. When
a suggestion fulfills all three criteria, we classify it as excellent, oth-
erwise it is downgraded accordingly. In cases of disagreement, a
third author participated in the discussion to reach an agreement.
As a result, we identified 372 samples (96.9%) with good (40) or
excellent (332) quality and 12 samples with fair quality. None of the
samples were classified as poor quality. This outcome has signifi-
cantly bolstered our confidence in the training and evaluation of
our approach based on the prepared dataset.

4.2 Experimental Settings

We partitioned the dataset randomly into training, validation, and
testing sets with fractions of 80%, 10%, and 10%, respectively. To
ensure efficient processing and to accommodate the majority of
cases, we set the length limits of the vulnerable function and sug-
gestion to 400 and 100 tokens, respectively. We opted not to restrict
the vocabulary since CodeT5 utilizes a pre-trained BPE tokenizer
with 32k sub-tokens. For the localness-based attention, we set the
alignment factor « to 1 since it fits well in our experiments. We
keep this factor in our approach for generalization purposes. Dur-
ing supervised fine-tuning of CodeT5, we employed CodeT5-base,
which has approximately 220M parameters. The training process
involved 30 epochs with a batch size of 32 and utilized the Adam
optimizer with a learning rate of le-4. We determined the optimal
value for A in the final loss to be 0.1 by iteratively testing values

Zhttps://platform.openai.com/docs/guides/gpt



VulAdvisor: Natural Language Suggestion Generation for Software Vulnerability Repair

from 0 to 1. During inference, we utilized a beam search size of 5
to generate suggestions for vulnerability fixes.

All experiments were conducted on an Ubuntu 18.04 server with
48 cores of Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz, 256GB
RAM, and 4 GTX3090 GPUs with 24GB memory.

4.3 Baselines

After conducting an extensive literature review on vulnerability
repair, we discovered that there is no existing work specifically
dedicated to generating vulnerability suggestions. As a result, we
compare our approach with both traditional neural models and
pre-trained LLMs of code, namely Seq2Seq [15, 22], Transformer
[4, 46], CodeBert [11], and CodeLlama (7B) [42]. These models are
commonly employed for generating text from source code. To en-
sure a fair comparison, we used the same hyper-parameters for
these models as we did for our own approach, unless explicitly
mentioned otherwise. All models were trained using their full pa-
rameters, with the exception of CodeLlama. For CodeLlama, we
employed the LORA technique to facilitate its operation on our
server because of its large scale. Besides, since our oracle extraction
process utilizes ChatGPT, we are curious to assess its performance
when provided solely with the vulnerable function. For this pur-
pose, we use GPT-3.5 and GPT-4. The prompt format is structured
as follows: “Given the vulnerable function, please briefly suggest how
to fix it within 100 words: <code>". We restrict the response length
to 100 words in order to maintain consistency with the settings of
all other approaches being evaluated.

4.4 Evaluation Metrics

To assess the performance of our approach and compare it with
the baselines, we first use two lexical evaluation metrics in natural
language processing tasks: ROUGE-L [28] and BLEU [39]. ROUGE-L
measures the longest common subsequence between the generated
and oracle suggestions. BLEU compares the n-grams (i.e., BLEU-4)
of the generated text with those in the reference and computes a
precision-based score. We also use the BERTScore metric [67] to
evaluate the quality of the generated repair suggestions. BERTScore
computes the similarity between the generated suggestions and
the oracle using contextual embeddings from a pre-trained BERT
model.

In addition to existing metrics, we propose a Repair Action Score
(RAS) that measures the accuracy of a model for generating key
repair actions. It reflects how well the model captures specific repair
actions that contribute to the overall quality. The RAS is calculated
using the Jaccard similarity coefficient, which measures the simi-
larity and diversity of sets of repair actions. Given a set of repair
actions generated by the model RA,;; and a set of ground truth
repair actions RAy, the Jaccard similarity coefficient is calculated
as:

N i i
1 |RA;, NRAL|
s - 37 4 04
= |RA}, U RAY|
where N is the total number of instances being evaluated.

For all metrics, the higher scores indicate better alignment be-
tween the generated suggestions and the ground-truth.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Table 1: Comparison of different approaches for vulnerability
repair suggestion.

Model BLEU ROUGE-L BERTScore RAS
Seq2Seq 10.9 26.9 61.8 7.1
Transformer 6.1 24.7 58.7 6.1

" CodeBert 167 308 642 100
CodeLlama-7B  12.4 27.1 63.6 6.6

“GPT-35 33 173 567 15
GPT-4 3.2 17.0 55.9 1.5

" VulAdvisor 210 347 67.7 125

4.5 Results

We investigate the effectiveness of our proposed approach by an-
swering the following three research questions.

4.5.1 RQI. How does our approach perform on generating
vulnerability repair suggestions compared to the baselines?
Before presenting the outcomes of supervised learning-based meth-
ods, from Table 1, it is obvious that ChatGPT scored quite low across
all metrics. This is particularly noticeable in the BLEU and RAS,
which are in the single digits. As highlighted in Figure 1, this issue is
compounded by the incorrect identification of vulnerable elements
and the generation of overly general suggestions, rendering the
outputs from ChatGPT of limited practical value. We expected that
GPT-4 would exhibit significantly improved performance. However,
to our surprise, the observed performance remained very close
to GPT-3.5, or even decreased. This suggests that, without addi-
tional context or information, ChatGPT faces significant challenges
in accurately predicting solutions solely based on its pre-trained
knowledge.

In contrast, the classic traditional model, Seq2seq, achieves a
ROUGE-L score of 26.9% and a BLEU score of 10.9%, which is much
higher. The effectiveness of Seq2seq comes from its capability to
learn sequential relationships, where control or data dependencies
are resided in. Nevertheless, Transformer, which aims to highlight
dependencies, may struggle to identify the most critical ones as it
calculates all mutual information without denoising. As a result, its
performance is even worse than Seq2seq (e.g., 4.8% lower in terms
of absolute BLEU).

Pre-trained LLMs show a significant improvement over tradi-
tional neural model. Specifically, the ROUGE-L score of CodeBert
is 30.8%, which improves Seq2seq by 3.9%. Considering the archi-
tecture is the same as Transformer, such an improvement is largely
attributed to the abundance of knowledge from massive source
code and documents during pre-training. When predicting the vul-
nerability and making suggestions after fine-tuning, CodeBert can
more easily differentiate the vulnerable and benign code semantics
based on the pre-trained dependencies. Contrary to our expecta-
tions for CodeLlama to yield high scores, the results turn out to be
quite disappointing. Its overall performance is significantly lower
compared to that of the lightweight CodeBERT (e.g., 10.0% v.s. 6.6%
in RAS). We conjecture that, a decoder-only model like CodeLlama
is limited to capturing dependencies only in the forward direction.
Also, the large scale of parameters along with comparatively small



ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

Table 2: Results of the ablation study for the main compo-
nents of VulAdvisor.

Model BLEU ROUGE-L BERTScore RAS
SFT (CodeT5) 19.5 33.4 65.9 11.3
SFT+LA 20.4 34.2 67.3 11.6
SFT+RAL 20.6 34.5 67.5 12.2
SFT+LA+RAL 21.0 34.7 67.7 12.5

dataset, may restrict it to fit well, which may explain its relatively
lower efficacy in this context.

Our proposed VulAdvisor significantly outperforms all the base-
lines by a large margin. For example, the improvement in BLEU
score is 4.3% compared with CodeBert, which is considered a sig-
nificant advancement in text generation tasks [66]. Notably, the
improvement in BERTScore or RAS is as pronounced as for BLEU.
This is because our underlying model, CodeT5, has a pre-trained
decoder, which aids in generating fix suggestions more naturally.
Moreover, the enhanced localness and repair action employed in
our approach contribute to learning more precise and contextually
appropriate suggestions.

4.5.2 RQ2.How effective are the main components of VulAd-
visor for the quality of generated suggestions? In this research
question, we examine the effectiveness of the two main components
of VulAdvisor, namely Localness-based Attention (LA) and Repair
Action Loss (RAL), in the quality of generated suggestions. We
conduct ablation experiments, where we selectively include one
or more of these components. The results of the ablation study
are presented in Table 2. In the ablation study, when we use the
notation "SFT)" it means that we simply fine-tune the pre-trained
CodeT5 model.

Firstly, the addition of the LA component (SFT+LA) leads to a
notable increase in performance across all metrics. For example, the
ROUGE-L score improves marginally from 33.4% to 34.2%. While
this increase appears modest, the BERTScore that calculates se-
mantic similarity reveals significant enhancements. Notably, key
function calls have been more accurately revised. For instance, a
suggestion to replace vpx_memcpy” with vpx_memalign” is par-
ticularly relevant, considering that “vpx_memcpy” is absent in the
vulnerable function. This correction addresses the issue of missing
local context in the fine-tuning of Code-T5, which previously led
to suggestions of irrelevant code elements.

When we integrate RAL into the supervised fine-tuning step
(SFT+RAL), the model’s performance also improves. In particular,
the RAS, for instance, rises from 11.3% to 12.2%. This can be attrib-
uted to the emphasis of the repair actions, the consistency between
training and inference in word generation. It is also noteworthy
that introducing the repair action loss does not sacrifice the ac-
curacy of other words. The BERTScore also indicates an overall
improvement in semantics. This is achieved by our hyperparameter
A, which strikes a good balance between the importance of other
words and repair actions.

Finally, we observe that the VulAdvisor model achieves the high-
est scores, demonstrating the effectiveness of the integrated ap-
proach that incorporates two additional components.

Jian Zhang, Chong Wang, Anran Li, Wenhan Wang, Tianlin Li, and Yang Liu

Table 3: Results of vulnerability patch generation with and
without repair suggestions.

Model BLEU EM | Model BLEU EM
VRepair 36.7 7.0 | VulRepair 39.6 9.9
VRepair+GT  56.3  18.4 | VulRepair+GT  61.1  22.8
VRepair+Ours 42.0  11.9 | VulRepair+Ours 44.0  15.0

4.5.3 RQa3. Can the natural language suggestion help im-
prove the effectiveness of patch generation for AVR tools?
As discussed in Section 2.2, our VulAdvisor can not only guide
developers to fix vulnerabilities, but can also used as additional
information for automatic patch generation. To evaluate this, we
utilize the ground-truth suggestions or predicted ones from VulAd-
visor and concatenate them with the vulnerable function. We take
VRepair [6] and VulRepair [12] as the baseline models to assess the
impact of incorporating suggestions in vulnerability patch gener-
ation. Note that we do not explicitly mark the lines that require
fixing during the fine-tuning process to simulate a real-world repair
scenario. Instead, we take the original function as input and expect
the model to generate the patch in the form of code changes (e.g., “-
unsigned int size; + size_t size;”). To keep consistence with previous
work, we use BLEU and Exact Match (EM) as the metrics.

Table 3 presents the results of this experiment. The table in-
cludes two settings: one with ground-truth suggestions (+GT) and
the other with predicted suggestions from VulAdvisor (+Ours). For
comparison, we also include the baseline results without any addi-
tional suggestions.

It is evident that the suggestions enhance patch generation per-
formance across both underlying models. For instance, the base
model VulRepair achieves moderate performance with BLEU and
EM of 39.6% and 9.9%, respectively. When incorporating ground-
truth suggestions into the fine-tuning process, we observe a sig-
nificant improvement in all evaluation metrics. For example, the
improvement in terms of BLEU is over an absolute value of 20%.
This substantial boost can be attributed to the high-quality and
accurate nature of the ground-truth suggestions, which provide
precise information on how to fix the vulnerabilities. By incorpo-
rating these reliable suggestions during fine-tuning, VulRepair can
better capture the necessary information and generate more effec-
tive patches. When comparing improvements over VRepair, the
gains achieved with VulRepair are generally higher, indicating that
our approach could be more effective for LLM-based AVR tools.

On the other hand, when using predicted suggestions from Vu-
1Advisor (VulRepair+Ours), we still observe significant improve-
ments over the baseline, although the performance is not as high as
when using ground-truth suggestions. This is because that, while
the predicted suggestions from VulAdvisor are helpful in guiding
the patch generation process, they may not always be as precise
as the ground-truth suggestions. The generated suggestions from
VulRepair+Ours may contain minor errors or deviations from the
optimal fixes, leading to slightly lower performance compared to
VulRepair+GT. Nonetheless, our approach presents an effective
and innovative strategy for enhancing AVR tools by integrating
human-readable suggestions from LLMs.



VulAdvisor: Natural Language Suggestion Generation for Software Vulnerability Repair

Table 4: The score distribution of generated suggestions

Score 1 2 3 4 5 6 7 26 Avg
ChatGPT 45 20 16 13 5 0 1 2.16
Seq2seq 28 10 20 14 16 3 12 3.19
CodeBert 25 13 17 13 14 11 7 18 3.39
VulAdvisor | 11 3 15 19 18 16 18 34 450

In conclusion, both ground-truth and predicted suggestions from
VulAdvisor significantly enhance the effectiveness of patch gen-
eration for vulnerability repair. Ground-truth suggestions provide
more precise and accurate guidance, resulting in the highest perfor-
mance improvements. However, even with predicted suggestions,
they still outperform the baselines, indicating that VulAdvisor’s gen-
erated suggestions offer useful information. These findings demon-
strate the high potential for improving automatic patch generation
tools.

4.6 Human Evaluation

We conduct human evaluation for measuring the semantic correct-
ness of generated suggestions and the utility of them for writing
patches.

4.6.1 Semantic Relevance. We invited 6 PhD students, each with
2-5 years of software security experience, to participate in the evalu-
ation. We compared our proposed approach VulAdvisor with three
representative baselines, namely ChatGPT, Seq2seq, and CodeBert,
from each of the categories in Table 1.

Specifically, we randomly selected 100 function-suggestion pairs
from the testing set. We fetched the vulnerable function with the
diff and oracle to facilitate assessing the generated suggestions,
and evenly divided them into two groups. Each group of sugges-
tions was then assigned to three different evaluators. The generated
suggestions were presented to the evaluators in random order, so
they were not aware of which approach the suggestion came from.
Evaluators were asked to rate the similarity of generated sugges-
tions to the references on a scale of 1 to 7. A score of 1 indicated
“Not Similar At All", while a score of 7 indicated “Exactly The Same
Meaning". Although a standard Likert scale typically ranges from 1
to 5 [34, 64], the 7-point scale is also widely used in existing studies
[63, 65]. We chose the 7-point scale because it allows for a more
fine-grained evaluation of the generated suggestions. Given the
multiple levels of correctness involved, such as the accuracy of the
vulnerable elements, the repair steps, and the explanations, a finer
granularity helps us better differentiate between the strengths and
weaknesses of the tools. For each suggestion, we collected three
scores from evaluators and calculated the median value as the final
score.

The results from Table 4 indicate that ChatGPT’s performance is
notably lower than its counterparts, as indicated by its highest con-
centration of suggestions rated at the lowest score (1) and the lowest
average score of 2.16. This, again, could blame to the general nature
of its security practice guidance and a potential gap in effectively
mapping vulnerability semantics to appropriate solutions.

While the baselines outperform ChatGPT, their overall effective-
ness is inadequate. Many of their scores are low, and a significant

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

number of suggestions receiving scores of 1 or 2. As a result, the
average score for the baselines is less than 3.5. In contrast, our
proposed approach VulAdvisor outperforms these baselines signif-
icantly. For instance, it achieves 22 more high scores (score > 6)
compared to Seq2seq and 16 more compared to CodeBert. To sta-
tistically validate the improvements achieved by our approach, we
conducted Wilcoxon signed-rank tests [54] on the 100 final scores.
The p-values of the tests at a 95% confidence level are 1.2e-13, 2.8e-
10 and 8.2e-07 respectively, when comparing our approach with
Seq2seq and CodeBert. The results indicate that the improvements
achieved by our approach are statistically significant. To sum up,
the results of human evaluation confirm the effectiveness of the
proposed approach.

4.6.2 Suggestion Utility. We conducted a controlled experiment to
further assess the effectiveness of VulAdvisor. Similar to existing
work [47, 61], we enlisted the help of 6 experienced developers from
a security company. The participants were divided into two groups:
Group 1 (G1) and Group 2 (G2), tasked with individual attempts
to fix a vulnerable function with and without the assistance of
VulAdvisor, respectively. We set the time limit to two days for the
100 samples, each of which could get 0-3 submissions for G1 and G2.
For each sample within each group, we evaluated the first correct
patch submitted, if any. After verification, we collected the recorded
time spent on each successful repair.

We find that, without the suggestions, G2 produced correct
patches for only 7 out of 37 samples that received submissions.
In contrast, G1, with the aid of suggestions, submitted patches for
92 samples, 20 of which were successfully fixed. On average, G2
spent 25 minutes successfully fixing each vulnerability, whereas
G1 only spent 8 minutes. These findings underscore the utility of
our tool in facilitating the vulnerability repair process.

4.7 Case Study

We present two cases of vulnerable functions with their refer-
ences and generated suggestions to discuss the superiority and
limitation of our model. To facilitate understanding the vulnera-
ble function, we additionally show the code change for fixing the
vulnerability in it. Note that the input for each model is only the
vulnerable function.

The first case shows a vulnerability with moderate complexity.
ChatGPT’s response, while somewhat related to the repair, mistak-
enly identifies the unrelated element for inspection. Similarly, the
baseline models generate irrelevant suggestions. In contrast, our
approach demonstrates remarkable accuracy in guiding the repair
process. Notably, VulAdvisor precisely identifies the vulnerable ele-
ment ‘render frame’, and correctly points to the fix position before
the class ‘AutofillHostMsg_ShowPasswordGenerationPopup’. This
owes to the localness enhancement, which captures local features
specific to this kind of function. Moreover, VulAdvisor provides
clear instructions on how to rectify the issue. While it doesn’t repli-
cate the exact wording of the reference, the suggested meaning
aligns closely. This effectiveness is largely due to the adopted re-
pair action loss, which adjusts the sequence of generated words to
ensure overall coherence.

While we have made some progress, the task of automatically
generating high-quality repair suggestions remains a significant



ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

Jian Zhang, Chong Wang, Anran Li, Wenhan Wang, Tianlin Li, and Yang Liu

Table 5: Two cases of vulnerable C/C++ functions with the repair suggestions. The pink highlights are the vulnerable elements,
while yellow and blue highlights indicate the repair practice for the vulnerability, and the reason behind it respectively.

Case 1

CASE 2

void PasswordGenerationAgent :: ShowGenerationPopup () {
+ if (!'render_frame())
+ return;
Send (new AutofillHostMsg_ShowPasswordGenerationPopup (
routing_id (),
render_frame () ->GetRenderView () ->
ElementBoundsInWindow (
generation_element_),
generation_element_.maxLength (),
generation_element_.nameForAutofill (),
is_manually_triggered_,
«generation_form_data_->form));
generation_popup_shown_ = true;

}

cdf_count_chain(const cdf_sat_t ssat, cdf_secid_t sid,
size_t size)

- cdf_secid_t maxsector=(cdf_secid_t)(sat->sat_len =
size);

+ cdf_secid_t maxsector=(cdf_secid_t) ((sat->sat_len =«
size)/sizeof (maxsector));

- if (sid > maxsector) {
- DPRINTF (( "Sector %d > %d\n", sid, maxsector));
+ if (sid >= maxsector) {
DPRINTF (( "Sector %d >= %d\n", sid, maxsector));
}
sid = CDF_TOLE4((uint32_t)sat->sat_tab[sid]);
} //The complete function is available at our website.

Reference: Add an additional check for the render_frame()
function before sending a message to show the password gener-
ation popup. This ensures that the function is not called if the
render_frame() function returns false, preventing any potential
errors or vulnerabilities.

Reference: Add a division operation to calculate the maximum
sector size based on the size of the sector and the length of the
SAT table. Additionally, the comparison operator can be changed
to include equality, ensuring that the sector ID is not greater
than or equal to the maximum sector size. This prevents the
function from accessing memory outside the bounds of the SAT
table.

ChatGPT: Sanitize the input and validate the data before send-
ing it. This can be done by implementing input validation checks
such as checking for null values, ensuring the maxLength is
within acceptable limits, and validating the nameForAutofill
field. Additionally...(more but irrelevant words)

ChatGPT: Add a check to ensure that the loop does not exceed
a certain limit, such as CDF_LOOP_LIMIT. If the loop limit is
reached, set errno to EFTYPE and return -1. Additionally, you
can add a check to ensure that the sid value does not exceed the
maximum sector...(more but irrelevant words)

Seq2seq: Add a check for the pf_exiting function call, which
checks if the cloned does not exceed the available channel.

Seq2seq: Change the DCHECK_EQ function to limit the read
compilations structure (contributions) and adding a new zVal
which trap function is executed...(more but irrelevant words)

CodeBert: Replace the creation of a generator with a call to the
AnimationStart() function, which returns a pointer to the ani-
mation object. This ensures that the object is properly displayed
and prevents any potential memory corruption issues.

CodeBert: Change the data type of the variable i from int to
long to prevent integer overflow. Additionally, a check can be
added to ensure that the loop does not exceed the maximum
allowed value.

VulAdvisor: Add a check for the existence of
the render frame before creating a new Autofill-
HostMsg_ShowPasswordGenerationPopup  message.  If
the render frame does not exist, the function returns without
executing any further code.

VulAdvisor: Add a new variable maxsector which is calculated
based on the value of sat->sat_tab[sid]. If sid is greater than
maxsector, the function returns an error. If sid is equal to 0, the
function returns 0. This prevents the function from accessing
memory outside the bounds of the sat_tab array and potentially
causing a buffer overflow.

challenge. For instance, in Case 2, nearly all methods, including
ours, struggle to offer effective repair guidance for the buffer over-
flow vulnerability. ChatGPT does mention relevant elements like
‘sid’, but falls short in providing actionable repair steps. Despite
VulAdvisor’s apparent advantage in pinpointing vulnerable ele-
ments and providing a clear explanation, it does not succeed in
generating a precise solution. This limitation might blame to the
lack of external dependency information, such as the definition
of ‘maxsector’. Also, our approach’s insensitivity to variable val-
ues sometimes leads to inaccurate predictions. These observations
underscore the necessity of incorporating global dependency and
dynamic information in future. We hope our work will inspire and
draw more research attention to tackle this challenging problem.

5 RELATED WORK
5.1 Automated Vulnerability Repair

Due to the necessity of repairing vulnerabilities, many patch genera-
tion techniques have been proposed. Apart from various traditional
ones [8, 13, 17, 25, 29, 68], there are arising DL-based Automated
Vulnerability Repair (AVR) approaches in the literature [6, 7, 12].
For example, Chen et al. [6] introduced VRepair, an AVR approach
based on transfer learning to deal with the problem of insufficient
vulnerability data.

Very recently, LLM-based AVR has attracted much more atten-
tion. VulRepair [12] proposed the first approach that leverages an
LLM, T5 architecture, on a large code corpus for patch generation.



VulAdvisor: Natural Language Suggestion Generation for Software Vulnerability Repair

Additionally, LLMs have been explored for zero-shot vulnerabil-
ity repair [40]. However, when evaluated on real-world scenarios,
these LLMs struggled to generate correct fixes, indicating that they
are not yet ready to provide real-world value. Furthermore, a recent
study compared the repair capabilities of LLMs and DL-based APR
models in the context of Java vulnerabilities [57]. The work evalu-
ated five LLMs and four DL-based APR techniques on real-world
Java vulnerability benchmarks. It was found that existing LLMs
and APR models had limited success in fixing Java vulnerabilities.

Different from the above studies that focus on patch generation
for vulnerability repair, we open a new dimension to facilitate de-
velopers with readable suggestions in the form of natural language
for ease of the process.

5.2 Automated Program Repair

At the same time, there has been a surge in the development of APR
techniques built upon DL [21, 27, 32, 60, 70], , as well as those ex-
tended to repair deep neural networks [26, 45]. The advent of LLMs
has opened new opportunities for the APR community. For instance,
Yuan et al. [62] introduced CIRCLE, a program repair framework
powered by T5, offering continuous learning capabilities across mul-
tiple programming languages. Xia et al. [59] presented AlphaRepair,
a cloze-style APR approach based on CodeBERT, without the need
for fine-tuning with historical bug-fixing data. Jiang et al. [20] in-
vestigated the effectiveness of pre-trained models, both with and
without fine-tuning, in the program repair domain. Additionally,
Xia et al. [58] conducted an extensive evaluation of recent pre-
trained models for rectifying issues in real-world projects. Their
findings demonstrated that state-of-the-art pre-trained models, in-
cluding CodeX, were capable of effectively addressing a substantial
number of bugs. Huang et al. [16] conducted a comprehensive study
on the program repair capability of LLMs in the fine-tuning par-
adigm, which significantly outperforms previous state-of-the-art
APR tools. Still, all these work focuses on generating bug patches
instead of natural language suggestions for vulnerability repair.

6 THREATS TO VALIDITY

Internal Validity. The quality of our constructed dataset, includ-
ing the functions and the ground-truths (i.e., suggestions), may
affect the effectiveness of our approach. To mitigate it, we have
performed the quality assessment using a sampling method that
ensures 95% confidence, and the results demonstrate its high quality.
Nevertheless, we cannot guarantee that all the samples are of equal
quality. We will consider better evaluation metrics or new meth-
ods for constructing our dataset in the future. For our approach
VulAdvisor, we did not fully explore the role played by the hyper-
parameters on its performance. This is because fine-tuning LLMs
can take a long time while there are many combinations of hyper-
parameters. Furthermore, the identification of repair actions may
not be optimal due to its heavy reliance on domain knowledge and
semantic understanding. Nevertheless, our extensive evaluation
has demonstrated its high potential. We encourage further research
to refine and enhance this strategy in the future.

External Validity. We have evaluated the effectiveness of our ap-
proach in real-world projects by addressing RQ1-RQ3. However,

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

our findings are currently limited to the C/C++ programming lan-
guages. In our future work, we plan to extend the diversity of
vulnerabilities. Regarding the baselines, we have considered a va-
riety of popular models. Models with even larger sizes (e.g., 13B),
could be potential candidates for vulnerability repair suggestions.
However, this requires substantial computational resources that
are currently beyond our reach.

7 CONCLUSION

In this paper, we propose VulAdvisor, an LLM-based approach for
automatically generating developer-centric suggestions towards
vulnerability repair. Unlike existing methods, VulAdvisor provides
natural language suggestions with detailed steps and reasons. We
leverage the power of ChatGPT and CodeT5 for oracle extraction
and suggestion learning. By incorporating the localness and repair
action, VulAdvisor excels in generating high-quality vulnerability
fix suggestions. Compared to baselines, VulAdvisor demonstrates
superior performance and meanwhile enhances patch generation.
The extensive experiments and human feedback demonstrate the
effectiveness of VulAdvisor. Our source code and experimental data
are publicly available at https://github.com/zhangj111/VulAdvisor.

ACKNOWLEDGEMENTS

This research/project is supported by the National Research Foun-
dation, Singapore under its Al Singapore Programme (AISG Award
No: AISG2-100E-2023-119), the Cyber Security Agency under its Na-
tional Cybersecurity R&D Programme (NCRP25-P04-TAICeN), and
the Ministry of Education, Singapore under its Academic Research
Fund Tier 1 (RG96/23). Any opinions, findings and conclusions
or recommendations expressed in this material are those of the
author(s) and do not reflect the views of National Research Founda-
tion, Singapore, Cyber Security Agency of Singapore and Ministry
of Education, Singapore.

REFERENCES

[1] 2023. Common Vulnerabilities and Exposures. https://cve.mitre.org/.

[2] 2023. The Heartbleed Bug. https://heartbleed.com/.

[3] 2023. National Vulnerability Database. https://nvd.nist.gov/.

[4] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2020. A

Transformer-based Approach for Source Code Summarization. In Proceedings of

the 58th Annual Meeting of the Association for Computational Linguistics. 4998

5007.

Marcel Bohme, Ezekiel O Soremekun, Sudipta Chattopadhyay, Emamurho

Ugherughe, and Andreas Zeller. 2017. Where is the bug and how is it fixed? an

experiment with practitioners. In Proceedings of the 2017 11th joint meeting on

foundations of software engineering. 117-128.

Zimin Chen, Steve Kommrusch, and Martin Monperrus. 2022. Neural transfer

learning for repairing security vulnerabilities in ¢ code. IEEE Transactions on

Software Engineering 49, 1 (2022), 147-165.

Jianlei Chi, Yu Qu, Ting Liu, Qinghua Zheng, and Heng Yin. 2022. Seqtrans:

automatic vulnerability fix via sequence to sequence learning. IEEE Transactions

on Software Engineering 49, 2 (2022), 564-585.

[8] Weidong Cui, Marcus Peinado, Helen ] Wang, and Michael E Locasto. 2007.
Shieldgen: Automatic data patch generation for unknown vulnerabilities with
informed probing. In 2007 IEEE Symposium on Security and Privacy (SP’07). IEEE,
252-266.

[9] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N Nguyen. 2013. Boa: A

language and infrastructure for analyzing ultra-large-scale software repositories.

In 2013 35th International Conference on Software Engineering (ICSE). IEEE, 422—

431.

Jiahao Fan, Yi Li, Shaohua Wang, and Tien N Nguyen. 2020. AC/C++ code

vulnerability dataset with code changes and CVE summaries. In Proceedings of

the 17th International Conference on Mining Software Repositories. 508-512.

—_
)

l6

7

[10


https://github.com/zhangj111/VulAdvisor
https://cve.mitre.org/
https://heartbleed.com/
https://nvd.nist.gov/

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

[11] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,

Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. CodeBERT: A Pre-
Trained Model for Programming and Natural Languages. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020. 1536-1547.

Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Van Nguyen, and Dinh Phung.
2022. VulRepair: a T5-based automated software vulnerability repair. In Pro-
ceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 935-947.

Xiang Gao, Bo Wang, Gregory J Duck, Ruyi Ji, Yingfei Xiong, and Abhik Roy-
choudhury. 2021. Beyond tests: Program vulnerability repair via crash constraint
extraction. ACM Transactions on Software Engineering and Methodology (TOSEM)
30, 2 (2021), 1-27.

Jacob Harer, Onur Ozdemir, Tomo Lazovich, Christopher Reale, Rebecca Russell,
Louis Kim, et al. 2018. Learning to repair software vulnerabilities with generative
adversarial networks. Advances in neural information processing systems 31
(2018).

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment
generation. In Proceedings of the 26th conference on program comprehension. 200—
210.

Kai Huang, Xiangxin Meng, Jian Zhang, Yang Liu, Wenjie Wang, Shuhao Li, and
Yugqing Zhang. 2023. An empirical study on fine-tuning large language models
of code for automated program repair. In 2023 38th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 1162-1174.

Zhen Huang, David Lie, Gang Tan, and Trent Jaeger. 2019. Using safety properties
to generate vulnerability patches. In 2019 IEEE Symposium on Security and Privacy
(SP). IEEE, 539-554.

Emanuele Tannone, Roberta Guadagni, Filomena Ferrucci, Andrea De Lucia, and
Fabio Palomba. 2022. The secret life of software vulnerabilities: A large-scale
empirical study. IEEE Transactions on Software Engineering 49, 1 (2022), 44-63.
Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan. 2023. Impact of code
language models on automated program repair. arXiv preprint arXiv:2302.05020
(2023).

Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan. 2023. Impact of Code
Language Models on Automated Program Repair. In Proceedings of the 45th
International Conference on Software Engineering (Melbourne, Victoria, Australia)
(ICSE °23). IEEE Press, 1430-1442. https://doi.org/10.1109/ICSE48619.2023.00125
Nan Jiang, Thibaud Lutellier, and Lin Tan. 2021. Cure: Code-aware neural machine
translation for automatic program repair. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 1161-1173.

Siyuan Jiang, Ameer Armaly, and Collin McMillan. 2017. Automatically generat-
ing commit messages from diffs using neural machine translation. In 2017 32nd
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 135-146.

Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
2013. Why don’t software developers use static analysis tools to find bugs?. In
2013 35th International Conference on Software Engineering (ICSE). IEEE, 672-681.
Ivan Victor Krsul. 1998. Software vulnerability analysis. Purdue University.
Junhee Lee, Seongjoon Hong, and Hakjoo Oh. 2018. Memfix: static analysis-based
repair of memory deallocation errors for c. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 95-106.

Tianlin Li, Yue Cao, Jian Zhang, Shigian Zhao, Yihao Huang, Aishan Liu, Qing
Guo, and Yang Liu. 2024. RUNNER: Responsible UNfair NEuron Repair for
Enhancing Deep Neural Network Fairness. In Proceedings of the 46th IEEE/ACM
International Conference on Software Engineering. 1-13.

Yi Li, Shaochua Wang, and Tien N Nguyen. 2020. Dlfix: Context-based code
transformation learning for automated program repair. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering. 602-614.
Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries.
In Text summarization branches out. 74-81.

Zhiqiang Lin, Xuxian Jiang, Dongyan Xu, Bing Mao, and Li Xie. 2007. AutoPaG:
towards automated software patch generation with source code root cause iden-
tification and repair. In Proceedings of the 2nd ACM symposium on Information,
computer and communications security. 329-340.

Kui Liu, Anil Koyuncu, Tegawendé F Bissyandé, Dongsun Kim, Jacques Klein,
and Yves Le Traon. 2019. You cannot fix what you cannot find! an investigation
of fault localization bias in benchmarking automated program repair systems. In
2019 12th IEEE conference on software testing, validation and verification (ICST).
IEEE, 102-113.

Zheheng Luo, Qiangian Xie, and Sophia Ananiadou. 2023. Chatgpt as a fac-
tual inconsistency evaluator for abstractive text summarization. arXiv preprint
arXiv:2303.15621 (2023).

Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and
Lin Tan. 2020. Coconut: combining context-aware neural translation models
using ensemble for program repair. In Proceedings of the 29th ACM SIGSOFT
international symposium on software testing and analysis. 101-114.

Siqi Ma, Ferdian Thung, David Lo, Cong Sun, and Robert H Deng. 2017. Vurle:
Automatic vulnerability detection and repair by learning from examples. In

[34

[35

[41

[42

[43]

[44

[45

=
&

[47

(48]

[49

o
=

[51

[52

[53

[54

[55

[56]

Jian Zhang, Chong Wang, Anran Li, Wenhan Wang, Tianlin Li, and Yang Liu

Computer Security—ESORICS 2017: 22nd European Symposium on Research in
Computer Security, Oslo, Norway, September 11-15, 2017, Proceedings, Part II 22.
Springer, 229-246.

Parvez Mahbub, Ohiduzzaman Shuvo, and Mohammad Masudur Rahman. 2023.
Explaining software bugs leveraging code structures in neural machine trans-
lation. In 2023 IEEE/ACM 45th International Conference on Software Engineering
(ICSE). IEEE, 640-652.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. 2020. On
Faithfulness and Factuality in Abstractive Summarization. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics. 1906-1919.
Fairuz Nawer Meem, Justin Smith, and Brittany Johnson. 2024. Exploring Experi-
ences with Automated Program Repair in Practice. In Proceedings of the IEEE/ACM
46th International Conference on Software Engineering. 1-11.

Xiangxin Meng, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. 2022.
Improving fault localization and program repair with deep semantic features
and transferred knowledge. In Proceedings of the 44th International Conference on
Software Engineering. 1169-1180.

OpenAl 2022. Introducing ChatGPT. https://openai.com/blog/chatgpt

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a
method for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computational Linguistics. 311-318.
Hammond Pearce, Benjamin Tan, Baleegh Ahmad, Ramesh Karri, and Brendan
Dolan-Gavitt. 2023. Examining zero-shot vulnerability repair with large language
models. In 2023 IEEE Symposium on Security and Privacy (SP). IEEE, 2339-2356.
Paige Rodeghero, Collin McMillan, Paul W McBurney, Nigel Bosch, and Sidney
D’Mello. 2014. Improving automated source code summarization via an eye-
tracking study of programmers. In Proceedings of the 36th international conference
on Software engineering. 390-401.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-
qing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. Code
llama: Open foundation models for code. arXiv preprint arXiv:2308.12950 (2023).
Muhammad Shahzad, Muhammad Zubair Shafiq, and Alex X Liu. 2012. A large
scale exploratory analysis of software vulnerability life cycles. In 2012 34th
International Conference on Software Engineering (ICSE). IEEE, 771-781.
Chenglei Si, Zhe Gan, Zhengyuan Yang, Shuohang Wang, Jianfeng Wang, Jor-
dan Lee Boyd-Graber, and Lijuan Wang. 2022. Prompting GPT-3 To Be Reliable.
In The Eleventh International Conference on Learning Representations.

Xinyu Sun, Wanwei Liu, Shangwen Wang, Tingyu Chen, Ye Tao, and Xiaoguang
Mao. 2024. AutoRIC: Automated Neural Network Repairing Based on Constrained
Optimization. ACM Transactions on Software Engineering and Methodology (2024).
Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. 2020.
Intellicode compose: Code generation using transformer. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 1433-1443.

Yida Tao, Jindae Kim, Sunghun Kim, and Chang Xu. 2014. Automatically gener-
ated patches as debugging aids: a human study. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering. 64-74.
Haoye Tian, Weiqi Lu, Tsz On Li, Xunzhu Tang, Shing-Chi Cheung, Jacques
Klein, and Tegawendé F Bissyandé. 2023. Is ChatGPT the Ultimate Programming
Assistant-How far is it? arXiv preprint arXiv:2304.11938 (2023).

Yingchen Tian, Yuxia Zhang, Klaas-Jan Stol, Lin Jiang, and Hui Liu. 2022. What
makes a good commit message?. In Proceedings of the 44th International Conference
on Software Engineering. 2389-2401.

Zhaopeng Tu, Zhendong Su, and Premkumar Devanbu. 2014. On the localness
of software. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. 269-280.

Daniel Votipka, Kelsey R Fulton, James Parker, Matthew Hou, Michelle L Mazurek,
and Michael Hicks. 2020. Understanding security mistakes developers make:
Qualitative analysis from build it, break it, fix it. In 29th USENIX Security Sympo-
sium (USENIX Security 20). 109-126.

Weishi Wang, Yue Wang, Shafiq Joty, and Steven CH Hoi. 2023. RAP-Gen:
Retrieval-Augmented Patch Generation with CodeT5 for Automatic Program
Repair. In Proceedings of the 31st ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering. 146—158.
Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. 2021. CodeT5: Identifier-
aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and
Generation. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing. 8696—8708.

Frank Wilcoxon, SK Katti, and Roberta A Wilcox. 1970. Critical values and
probability levels for the Wilcoxon rank sum test and the Wilcoxon signed rank
test. Selected tables in mathematical statistics 1 (1970), 171-259.

Emily Winter, David Bowes, Steve Counsell, Tracy Hall, Seemundur Haraldsson,
Vesna Nowack, and John Woodward. 2022. How do developers really feel about
bug fixing? directions for automatic program repair. IEEE Transactions on Software
Engineering (2022).

Emily Rowan Winter, Vesna Nowack, David Bowes, Steve Counsell, Tracy Hall,
Seemundur Haraldsson, John Woodward, Serkan Kirbas, Etienne Windels, Olayori
McBello, et al. 2022. Towards developer-centered automatic program repair:


https://doi.org/10.1109/ICSE48619.2023.00125
https://openai.com/blog/chatgpt

VulAdvisor: Natural Language Suggestion Generation for Software Vulnerability Repair

findings from Bloomberg. In Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
1578-1588.

Yi Wu, Nan Jiang, Hung Viet Pham, Thibaud Lutellier, Jordan Davis, Lin Tan, Petr
Babkin, and Sameena Shah. 2023. How Effective Are Neural Networks for Fixing
Security Vulnerabilities. In Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis (Seattle, WA, USA) (ISSTA 2023).
Association for Computing Machinery, New York, NY, USA, 1282-1294. https:
//doi.org/10.1145/3597926.3598135

Chungiu Steven Xia, Yuxiang Wei, and Lingming Zhang. 2023. Automated
program repair in the era of large pre-trained language models. In Proceedings of
the 45th International Conference on Software Engineering (ICSE 2023). Association
for Computing Machinery.

Chungiu Steven Xia and Lingming Zhang. 2022. Less training, more repairing
please: revisiting automated program repair via zero-shot learning. In Proceedings
of the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 959-971.

He Ye, Matias Martinez, and Martin Monperrus. 2022. Neural program repair
with execution-based backpropagation. In Proceedings of the 44th International
Conference on Software Engineering. 1506-1518.

[61] Jooyong Yi, Umair Z Ahmed, Amey Karkare, Shin Hwei Tan, and Abhik Roy-

choudhury. 2017. A feasibility study of using automated program repair for
introductory programming assignments. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering. 740-751.

Wei Yuan, Quanjun Zhang, Tieke He, Chunrong Fang, Nguyen Quoc Viet Hung,
Xiaodong Hao, and Hongzhi Yin. 2022. CIRCLE: Continual repair across program-
ming languages. In Proceedings of the 31st ACM SIGSOFT International Symposium
on Software Testing and Analysis. 678-690.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

[63] Jian Zhang, Shangqing Liu, Xu Wang, Tianlin Li, and Yang Liu. 2023. Learning

to Locate and Describe Vulnerabilities. In 2023 38th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 332-344.

[64] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. 2020.

Retrieval-based neural source code summarization. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering. 1385-1397.

[65] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Yanjun Pu, and Xudong

Liu. 2020. Learning to handle exceptions. In Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering. 29-41.

[66] Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter Liu. 2020. Pegasus:

Pre-training with extracted gap-sentences for abstractive summarization. In
International Conference on Machine Learning. PMLR, 11328-11339.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi.
2019. BERTScore: Evaluating Text Generation with BERT. In International Con-
ference on Learning Representations.

Yuntong Zhang, Xiang Gao, Gregory J Duck, and Abhik Roychoudhury. 2022.
Program vulnerability repair via inductive inference. In Proceedings of the 31st
ACM SIGSOFT International Symposium on Software Testing and Analysis. 691—
702.

Xin Zhou, Kisub Kim, Bowen Xu, DongGyun Han, and David Lo. 2024. Out of
Sight, Out of Mind: Better Automatic Vulnerability Repair by Broadening Input
Ranges and Sources. In Proceedings of the IEEE/ACM 46th International Conference
on Software Engineering. 1-13.

Qihao Zhu, Zeyu Sun, Yuan-an Xiao, Wenjie Zhang, Kang Yuan, Yingfei Xiong,
and Lu Zhang. 2021. A syntax-guided edit decoder for neural program repair.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 341-353.


https://doi.org/10.1145/3597926.3598135
https://doi.org/10.1145/3597926.3598135

	Abstract
	1 Introduction
	2 Problem and Preliminary
	2.1 Problem Definition
	2.2 Use Scenarios

	3 Approach
	3.1 Overview
	3.2 Oracle Extraction
	3.3 Suggestion Learning

	4 Evaluation
	4.1 Dataset
	4.2 Experimental Settings
	4.3 Baselines
	4.4 Evaluation Metrics
	4.5 Results
	4.6 Human Evaluation
	4.7 Case Study

	5 Related Work
	5.1 Automated Vulnerability Repair
	5.2 Automated Program Repair

	6 Threats to Validity
	7 Conclusion
	References

