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Abstract—Exploiting machine learning techniques for analyz-
ing programs has attracted much attention. One key problem
is how to represent code fragments well for follow-up analysis.
Traditional information retrieval based methods often treat
programs as natural language texts, which could miss important
semantic information of source code. Recently, state-of-the-art
studies demonstrate that abstract syntax tree (AST) based neural
models can better represent source code. However, the sizes of
ASTs are usually large and the existing models are prone to
the long-term dependency problem. In this paper, we propose
a novel AST-based Neural Network (ASTNN) for source code
representation. Unlike existing models that work on entire ASTs,
ASTNN splits each large AST into a sequence of small statement
trees, and encodes the statement trees to vectors by capturing
the lexical and syntactical knowledge of statements. Based on the
sequence of statement vectors, a bidirectional RNN model is used
to leverage the naturalness of statements and finally produce the
vector representation of a code fragment. We have applied our
neural network based source code representation method to two
common program comprehension tasks: source code classification
and code clone detection. Experimental results on the two tasks
indicate that our model is superior to state-of-the-art approaches.

Keywords-Abstract Syntax Tree; source code representation;
neural network; code classification; code clone detection

I. INTRODUCTION

Many software engineering methods, such as source code

classification [1], [2], code clone detection [3], [4], [5], [6],

defect prediction [7], [8] and code summarization [9], [10]

have been proposed to improve software development and

maintenance. One main challenge that is common across all

these methods is how to represent source code, in order

to effectively capture syntactical and semantic information

embedded in the source code.

Traditional approaches such as Information Retrieval (IR)

usually treat code fragments as natural language texts and

model them based on tokens. For example, programs are

represented by token sequences or bag of tokens for code clone

detection [3], [4], bug localization[11], and code authorship

classification [1]. In addition, a number of researchers use

Latent Semantic Indexing (LSI) [12] and Latent Dirichlet

Allocation (LDA) [13] to analyze source code [14], [15], [16].

However, according to [17], the common problem of these

approaches is that they assume the underlying corpus (i.e.,

∗Corresponding author: Xu Wang, wangxu@act.buaa.edu.cn.

the source code) is composed of natural language texts. Even

though code fragments have something in common with plain

texts, they should not be simply dealt with text-based or token-

based methods due to their richer and more explicit structural

information [2], [18].

Recent work [2], [5], [6] provides the strong evidence that

syntactic knowledge contributes more in modeling source code

and can obtain better representation than traditional token-

based methods. These approaches combine Abstract Syntax

Tree (AST) and Recursive Neural Network (RvNN) [5], Tree-

based CNN [2] or Tree-LSTM [6] to capture both the lexical

(i.e., the leaf nodes of ASTs such as identifiers) and syntactical

(i.e., the non-leaf nodes of ASTs like the grammar construct

WhileStatement) information. Such AST-based neural models

are effective, yet they have two major limitations. First, similar

to long texts in NLP, these tree-based neural models are

also vulnerable to the gradient vanishing problem that the

gradient becomes vanishingly small during training, especially

when the tree is very large and deep [19], [20], [21]. For

example, as our experiments show (Section V), the maximal

node number/depth of ASTs of common code fragments in

C and Java are 7,027/76 and 15,217/192, respectively. As

a result, traversing and encoding entire ASTs in a bottom-

up way [5], [6] or using the sliding window technique [2]

may lose long-term context information [19], [22]; Second,

these approaches either transform ASTs to or directly view

ASTs as full binary trees for simplification and efficiency,

which destroys the original syntactic structure of source code

and even make ASTs much deeper. The transformed and

deeper ASTs further weaken the capability of neural models

to capture more real and complex semantics [23].

In order to overcome the limitations of the above AST-

based neural networks, one solution is to introduce explicit

(long-term) control flow and data dependencies graphs and

employ a Graph Embedding technique [24] to represent source

code. For instance, one recent study considers the long-

range dependencies induced by the same variable or function

in distant locations [25]. Another study directly constructs

control flow graphs (CFGs) of code fragments [26]. However,

as depicted in the above work, precise and inter-procedural

program dependency graphs (PDGs) (i.e. control flow and data

flow dependencies) [27] usually rely on compiled intermediate

representations or bytecodes [28], [29], and are not applicable
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static public String readText(final String path) 
throws IOException { 
        final InputStream stream  
   = FileLocator.getAsStream(path); 
        final StringBuilder sb  
   = new StringBuilder(); 
        try (BufferedReader reader =  
   new BufferedReader(  
   new InputStreamReader(stream))){ 
           String line; 
           while ((line=reader.readLine())!=null)
           { 
              sb.append(line).append("\n"); 
           } 
        } 
        return sb.toString();     
       } 

(a) Code fragment and statements
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(b) AST and statement trees
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(c) Statement naturalness

Fig. 1. An example of AST Statement nodes (marked in red)

to uncompilable and incomplete code fragments. Such a lim-

itation hinders the applications of the code representations in

many areas that involve arbitrary code fragments.

In this paper, we propose a novel approach for representing

code fragments that do not have to be compilable, called

AST-based Neural Network (ASTNN), which splits the large

AST of one code fragment into a set of small trees at

the statement level and performs tree-based neural embed-

dings on all statement trees. It produces statement vectors

which can represent the lexical and statement-level syntactical

knowledge. Here statements refer to the Statement AST

nodes defined in program language specification [30]. We

also treat MethodDeclaration as a special statement node. As

an example, Figure 1 shows a code fragment from an open

source project1. The code snippet between line 7 and line

15 contains a whole Try statement and the code snippet

between line 5 and line 6 includes only the LocalV ariable
statement initializing variable sb. For each statement like the

Try statement that includes the header and other statements in

the body, we split the header of the statement and all included

statements. In this way, the large AST is decomposed to a

short sequence of small statement trees. We use Recurrent

Neural Network (RNN) [31] to encode statements and the

sequential dependency between the statements into a vector.

Such a vector captures the naturalness of source code [32],

[33] and can serve as a neural source code representation.

More specifically, first, we build an AST from the code

fragment and split the whole AST to small statement trees (one

tree consisting of AST nodes of one statement and rooted at the

Statement node). For example, in Figure 1, the statement trees

are denoted by dashed lines and the corresponding statements

(or statement headers) in the original code fragment are also

marked by dashed lines. Second, we design a recursive encoder

on multi-way statement trees to capture the statement-level

lexical and syntactical information and then represent them in

statement vectors. Third, based on the sequence of statement

1https://github.com/apache/ctakes/blob/
9c552c5c4f92af00d9d008b8c7f9e9d326a2450a/ctakes-core/src/main/java/org/
apache/ctakes/core/resource/FileReadWriteUtil.java#L32

vectors, we use bidirectional Gated Recurrent Unit (GRU)

[34], [35], one type of recurrent neural network, to leverage

the sequential naturalness of statements and finally obtain the

vector representation of an entire code fragment.

In summary, our proposed neural source code representation

aims to learn more syntactical and semantic information about

source code than the state-of-the-art AST-based neural models.

It is general-purpose and can be used in many program

comprehension related tasks such as source code classification

and code clone detection. We have conducted experiments

on the two tasks on public benchmarks and compared with

state-of-the-art approaches. The experimental results show that

our model is more effective. For example, for source code

classification, our approach improves the accuracy from 94%

to 98.2%. For clone detection, our approach improves the

results of F1 values from 82% to 93.8% and 59.4% to 95.5%

on two benchmark datasets, respectively.

Our main contributions are as follows:

• We propose a novel neural source code representation,

which can capture the lexical, statement-level syntactical

knowledge, and the naturalness of statements;

• We have applied our representation to two common

program comprehension tasks (code classification and

clone detection). The experimental results show that our

approach can improve the state-of-the-art methods.

The remainder of this paper is structured as follows. Sec-

tion II introduces the background. Section III presents our

approach. Section IV describes the applications of our neural

source code representation. Section V provides our exper-

imental results. Related work and discussion about threats

to validity are presented in Section VI and Section VII,

respectively. Finally, Section VIII concludes our work.

II. BACKGROUND

A. Abstract Syntax Tree

Abstract Syntax Tree (AST) is a kind of tree aimed at

representing the abstract syntactic structure of the source code

[36]. It has been widely used by programming language and

software engineering tools. As illustrated in Figure 1(b), nodes
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of an AST are corresponding to constructs or symbols of the

source code. On the one hand, compared with plain source

code, ASTs are abstract and do not include all details such as

the punctuation and delimiters. On the other hand, ASTs can

be used to describe the lexical information and the syntactic

structure of source code, such as the method name readText
and the control flow structure WhileStatement in Figure 1(b).

Some studies directly use ASTs in token-based methods

for source code search [37], program repair [38] and source

code differencing [39]. Due to the limitation of token-based

approaches [17], these methods can catch little syntactical

information of source code.

B. Tree-based Neural Networks

Recently Tree-based Neural Networks (TNNs) have been

proposed to accept ASTs as the input. Given a tree, TNNs

learn its vector representation by recursively computing node

embeddings in a bottom-up way. The most representative

tree-based models for ASTs are Recursive Neural Network

(RvNN), Tree-based CNN (TBCNN) and Tree-based Long

Short-Term Memory (Tree-LSTM).

1) Recursive Neural Network: RvNN was first proposed for

the recursive structure in natural language and image parsing

[40]. Specifically, given a tree structure, suppose that one

parent node y1 has two children nodes (c1, c2), where c1 and

c2 are word embeddings or intermediate vector representations

of nodes. The vector of node y1 is computed by:

p = f(W (1)[c1; c2] + b(1))

where W (1) is a matrix of parameters, f is an element-wise

activation function, and b(1) is a bias term. To assess the

quality of this vector representation, a decoding layer is used

to reconstruct the children:

[c′1; c
′
2] = W (2)p+ b(2)

Then the training loss is measured by E(θ) = ||c1 − c′1||22 +
||c2 − c′2||22. In this way, RvNN can recursively compute and

optimize parameters across the tree, and the final vector of

the root node will represent the given tree. Based on RvNN, a

recursive autoencoder (RAE) is incorporated for automatically

encoding ASTs to detect code clones [5], where ASTs are

transformed to full binary trees due to the fixed-size inputs

for simplification.

2) Tree-based Convolutional Neural Network: TBCNN

performs convolution computation over tree structures for

supervised learning such as source code classification [2].

Its core module is an AST-based convolutional layer, which

applies a set of fixed-depth feature detectors by sliding over

entire ASTs. This procedure can be formulated by:

y = tanh(

n∑
i=1

Wconv,i · xi + bconv)

where x1, · · · , xn are the vectors of nodes within each sliding

window, Wconv,i are the parameter matrices and bconv is the

bias. TBCNN adopts a bottom-up encoding layer to integrate

some global information for improving its localness. Although

nodes in the original AST may have more than two children,

TBCNN treats ASTs as continuous full binary trees because

of the fixed size of convolution.

3) Tree-based Long Short-Term Memory: Tree-LSTM is a

generalization of LSTMs to model tree-structured topologies.

Different from standard LSTM, Child-Sum Tree-LSTM [41]

recursively combines current input with its children states

for state updating across the tree structure. CDLH [6] uses

Tree-LSTM to learn representations of code fragments for

clone detection where code fragments are parsed to ASTs.

To deal with the variable number of children nodes, ASTs

are transformed to full binary trees. After a bottom-up way

of computation, the root node vectors of ASTs are used to

represent the code fragments.

C. The limitations of the existing work

These three tree-based methods have two major limitations.

First, during gradient-based training of tree topologies, the gra-

dients are calculated via backpropagation over structures [41],

[23]. However, the structures of ASTs are usually large and

deep due to the complexity of programs, especially the nested

structures. Thus the bottom-up computations from the leaf

nodes to the root nodes may experience the gradient vanishing

problem and are difficult to capture long-range dependencies

[19], [22], which will miss some of the semantics carried by

distant nodes from the root nodes such as identifiers in the leaf

nodes. Second, the existing tree-based methods view ASTs as

binary trees by moving three or more children nodes of a

parent node to new subtrees for simplification, which changes

the original semantics of source code and makes the long-term

dependency problem more serious. For example, CDLH [6]

can only have the F1 value of 57% in one public benchmark

for clone detection, and the studies in NLP [23], [41], [21]

show that the tree size and depth do matter and have significant

impact on the performance.

III. OUR APPROACH

We introduce our AST-based Neural Network (ASTNN) in

this section. The overall architecture of ASTNN is shown in

Figure 2. First, we parse a source code fragment into an AST,

and design a preorder traversal algorithm to split each AST

to a sequence of statement trees (ST-trees, which are trees

consisting of statement nodes as roots and corresponding AST

nodes of the statements), as illustrated in Figure 1. All ST-trees

are encoded by the Statement Encoder to vectors, denoted as

e1, · · · , et. We then use Bidirectional Gated Recurrent Unit

[35] (Bi-GRU), to model the naturalness of the statements.

The hidden states of Bi-GRU are sampled into a single vector

by pooling, which is the representation of the code fragment.

A. Splitting ASTs and Constructing ST-tree Sequences

At first, source code fragments can be transformed to large

ASTs by existing syntax analysis tools. For each AST, we split

it by the granularity of statement and extract the sequence of

statement trees with a preorder traversal.
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Fig. 2. The architecture of AST-based Neural Network

Formally, given an AST T and a set of Statement AST

nodes S, each statement node s ∈ S in T corresponds one

statement of source code. We treat MethodDeclaration as a

special Statement node, thus S = S∪{MethodDeclaration}.

For nested statements, as shown in Figure 1, we define the

set of separate nodes P = {block, body} where block is

for splitting the header and body of nested statements such

as Try and While statements, and body for the method

declaration. All of the descendants of statement node s ∈ S
is denoted by D(s). For any d ∈ D(s), if there exists

one path from s to d through one node p ∈ P , it means

that the node d is included by one statement in the body

of statement s. We call node d one substatement node of

s. Then a statement tree (ST-tree) rooted by the statement

node s ∈ S is the tree consisting of node s and all of

its descendants excluding its substatement nodes in T . For

example, the first ST-tree rooted by MethodDeclaration is

surrounded by dashed lines in Figure 1(b), which includes

the header part such as “static”, “public” and “readText” and

excludes the nodes of the two LocalV ariable, one Try and

one Return statement in the body. Since nodes of one ST-

tree may have three or more children nodes, we also call it

multi-way ST-tree for distinguishing it from a binary tree. In

this way, one large AST can be decomposed to a sequence of

non-overlapping and multi-way ST-trees.

The splitting of ASTs and the construction of ST-tree

sequences are straightforward by a traverser and a constructor.

The traverser visits each node through the ASTs in a depth-

first walk in preorder and the constructor recursively creates

a ST-tree to sequentially add to the ST-tree sequences. Such a

practice guarantees that one new ST-tree are appended by the

order in the source code. In this way, we get the sequence of

ST-trees as the raw input of ASTNN.

Note that the selection of splitting granularity of ASTs

is not trivial. We choose the statement trees in this work

since statements are essential units for carrying source code

semantics. We also experimented with other granularities such

Modifier readText 
Formal 

Parameter 
throws 

Method 
Declaration 

Pooling 

Reference 
Type body 

Statement Vector 

h1 h2 h3 hN hN-1 hN-2 h4 … 

Fig. 3. The statement encoder, where blue, orange and green circles represent
the initial embeddings, hidden states and statement vector, respectively.

as the node level of ASTs, the code blocks within brace

pairs, and the full ASTs. We will discuss these experiments

in Section V. If the size of selected granularity is too large

(e.g., the full AST), similar to the related work [5], [6], we

may also experience the gradient vanishing problem mentioned

in Section II. But if it is too small (e.g., the node level of

AST), the model will become a token-based RNN that may

capture less syntactical knowledge of statements than ours.

Our experimental results show that proposed statement-level

granularity is better since it has a good trade-off between the

size of ST-tree and the richness of syntactical information.

B. Encoding Statements on Multi-way ST-trees

1) Statement Vectors: Given the ST-trees, we design a

RvNN based statement encoder, which is used for learning

vector representations of statements.

Since there are a variety of special syntactic symbols in

ASTs, we obtain all the symbols by preorder traversal of

ASTs as the corpus for training. The word2vec [42] is used

to learn unsupervised vectors of the symbols, and the trained

embeddings of symbols are served as initial parameters in

the statement encoder. Because all the leaf nodes of ASTs

representing the lexical information such as identifiers are

also incorporated in the leaf nodes of ST-trees, our symbol

embeddings can capture the lexical knowledge well.

Taking the first ST-tree rooted by the node of MethodDec-
laration in Figure 1 as an example, the encoder traverses the

ST-tree and recursively takes the symbol of current node as

new input to compute, together with the hidden states of its

children nodes. This is illustrated in Figure 3. We only show

the first two levels here. In the ST-tree, the two children nodes

readText (i.e., the method name) and FormalParameter (i.e.,

the grammar structure defining parameters of the method) as

well as other siblings enrich the meaning of MethodDeclara-
tion. If we transform the ST-tree to one binary tree as described

in [5], [6], for example, moving the node of readText to one

child node or descendant of the FormalParameter node, the

original semantics may be destroyed. Instead, we take original

multi-way ST-trees as input.

Specifically, given a ST-tree t, let n denote a non-leaf

node and C denote the number of its children nodes. At
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the beginning, with the pre-trained embedding parameters

We ∈ R
|V |×d where V is the vocabulary size and d is the

embedding dimension of symbols, the lexical vector of node

n can be obtained by:

vn = We
�xn (1)

where xn is the one-hot representation of symbol n and vn is

the embedding. Next, the vector representation of node n is

computed by the following equation:

h = σ(Wn
�vn +

∑
i∈[1,C]

hi + bn) (2)

where Wn ∈ R
d×k is the weight matrix with encoding

dimension k, bn is a bias term, hi is the hidden state for each

children i, h is the updated hidden state, and σ is the activation

function such as tanh or the identity function. We use the

identity function in this paper. Similarly, we can recursively

compute and optimize the vectors of all nodes in the ST-tree t.
In addition, in order to determine the most important features

of the node vectors, all nodes are pushed into a stack and

then sampled by the max pooling. That is, we get the final

representation of the ST-tree and corresponding statement by

Equation 3, where N is the number of nodes in the ST-tree.

et = [max(hi1), · · · ,max(hik)], i = 1, · · · , N (3)

These statement vectors can capture both lexical and

statement-level syntactical information of statements.

2) Batch Processing: For improving the training efficiency

on large datasets, it is necessary to design the batch processing

algorithm to encode multiple samples (i.e., code fragments)

simultaneously. However, generally batch processing on multi-

way ST-trees makes it difficult since the number of children

nodes varies for the parent nodes in the same position of one

batch [2], [6]. For example, given two parent nodes ns1 with

3 children nodes and ns2 with 2 children nodes in Figure

4, directly calculating Equation 2 for the two parents in one

batch is impossible due to different C values. To tackle this

problem, we design an algorithm that dynamically processes

batch samples in Algorithm 1.

Intuitively, although parent nodes have different number of

children nodes, the algorithm can dynamically detect and put

all possible children nodes with the same positions to groups,

and then speed up the calculations of Equations 2 of each

group in a batch way by leveraging matrix operations. In

algorithm 1, we batch L samples of ST-trees and then breadth-

first traverse them starting from the root nodes (line 4). For

the current nodes ns in the same position of the batch, we

firstly calculate Equation 1 in batch (line 10), then detect and

group all their children nodes by the node positions (line 12-

16). As shown in Figure 4, we separate the children nodes to

three groups by their positions and record the groups in the

array lists C and CI . Based on these groups, we recursively

perform batch processing on all children nodes (line 17-21).

After getting the results of all children nodes, we compute

Equation 2 in batch (line 22), and push all node vectors of

Algorithm 1 Dynamic batching algorithm of ST-trees

Input: The array of root nodes in batched ST-trees, B;

Output: The vectors of batched ST-trees, BV ;

1: L ← len(B);
2: BI ← [1, · · · , L]; // ST-tree indexes in the batch

3: S ∈ R
N×L×k ← φ; // record all node vectors

4: Call DynamicBatch(B,BI);

5: Perform pooling on S by Eq. 3 to get BV ∈ R
L×k;

6: return BV ;

7: function DYNAMICBATCH(ns, ids) � The batched

current nodes ns and their indexes ids
8: l ← len(ns);
9: BC ∈ R

l×d ← 0; // initialize the matrix

10: Calculate Eq. 1 in batch for ns and fill into BC
according to ids;

11: Initialize two array list C,CI ← φ to record children

nodes and their batch indexes;

12: for each node ∈ ns do
13: for each children node child of node do
14: group child by its position, and record child

to C and its batch index to CI ;

15: end for
16: end for
17: for i = 0 → len(C)− 1 do
18: h̃ ∈ R

l×k ← 0;

19: η ← DynamicBatch(C[i], CI[i]);
20: h̃ ← h̃+ η;

21: end for
22: Calculate h by Eq. 2 in batch;

23: BZ ∈ R
L×k ← 0; // for calculating BV

24: Fill h into BZ according to ids and add BZ to S;

25: return h;

26: end function

 ଵ ܿଵ ܿଶ ܿଷݏ݊  

ଶ ܿଵᇱݏ݊   ܿଶᇱ  

ܿଵ ܿଵᇱ  ܿଶ ܿଶᇱ  ܿଷ 1 2 ,1 2 ,1 ܫܥ ܥ 

Fig. 4. An example of dynamically batching children nodes

batched ST-trees to the stack S (line 24). Finally we can obtain

the vectors of ST-tree samples and corresponding statements

by pooling described in Equation 3 (line 5).

C. Representing the Sequence of Statements

Based on the sequences of ST-tree vectors, we exploit GRU

[34] to track the naturalness of statements. We also considered

the choice of using LSTM and the comparison between LSTM

and GRU will be discussed in our experiment.

Given one code fragment, suppose there are T ST-

tree extracted from its AST and let Q ∈ R
T×k =

[e1, · · · , et, · · · , eT ], t ∈ [1, T ] denote the vectors of encoded
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ST-trees in the sequence. At time t, the transition equations

are as follows:

rt = σ(Wret + Urht−1 + br)

zt = σ(Wzet + Uzht−1 + bz)

h̃t = tanh(Whet + rt � (Uhht−1) + bh)

ht = (1− zt)� ht−1 + zt � h̃t

(4)

where rt is the reset gate to control the influence of previous

state, zt is the update gate to combine past and new infor-

mation, h̃t is the candidate state and used to make a linear

interpolation together with previous state ht−1 to determine

the current state ht. Wr,Wz,Wh, Ur, Uz, Uh ∈ R
k×m are

weight matrices and br, bz, bh are bias terms. After iteratively

computing hidden states of all time steps, the sequential

naturalness of these statements can be obtained.

In order to further enhance the capability of the recurrent

layer for capturing the dependency information, we adopt

a bidirectional GRU [34], where the hidden states of both

directions are concatenated to form the new states as follows:
−→
ht =

−−−→
GRU(et), t ∈ [1, T ]

←−
ht =

←−−−
GRU(et), t ∈ [T, 1]

ht = [
−→
ht ,

←−
ht ], t ∈ [1, T ]

(5)

Similar to the statement encoder, the most important fea-

tures of these states are then sampled by the max pooling

or average pooling. Considering the importance of different

statements are intuitively not equal, for example, API calls in

the MethodInvocation statements may contain more functional

information [43], thus we use max pooling for capturing

the most important semantics by default. The model finally

produces a vector r ∈ R
2m, which is treated as the vector

representation of the code fragment.

IV. APPLICATIONS OF THE PROPOSED MODEL

The proposed ASTNN model is general-purpose. It can be

trained for task-specific vector representations of source code

fragments to characterize different source code semantics for

many program comprehension tasks. In this work, we take two

common tasks including source code classification and code

clone detection as examples to show the applications of the

proposed model.

Source code classification. This task aims to classify code

fragments by their functionalities, which is useful for program

understanding and maintenance [2], [44], [45]. Given the code

fragment vector r and the number of categories M , we obtain

the logits by x̂ = Wor+bo, where Wo ∈ R
2m×M is the weight

matrix and bo is the bias term. We define the loss function as

the widely used cross-entropy loss:

J(Θ, x̂, y) =
∑(

−log
exp(x̂y)∑
j exp(x̂j)

)
(6)

where Θ denotes parameters of all the weight matrices in our

model and y is the true label.

Code clone detection. Detecting code clones is widely

studied in software engineering research [3], [4], [5], [6], [26],

which is to detect whether two code fragments implement the

same functionality. Suppose there are code fragment vectors

r1 and r2, and their distance is measured by r = |r1 − r2| for

semantic relatedness [41]. Then we can treat the output ŷ =
sigmoid(x̂) ∈ [0, 1] as their similarity where x̂ = Wor + bo.

The loss function is defined as binary cross-entropy:

J(Θ, ŷ, y) =
∑

(−(y · log(ŷ) + (1− y) · log(1− ŷ))) (7)

To train ASTNN models for the two tasks, the goal is to

minimize the loss. We use AdaMax [46] in this paper because

it is computationally efficient.

After all the parameters are optimized, the trained models

are stored. For new code fragments, they should be pre-

processed into sequences of ST-trees and then fed into the

reloaded models for prediction. The output are probabilities

p for different labels. For code classification, since there are

multiple categories, the inferred value can be obtained by:

prediction = argmax
i

(pi), i = 1, · · · ,M (8)

While for clone detection, p is a single value in the range

[0,1], thus we get the prediction by:

prediction =

{
True, p > δ
False, p ≤ δ

(9)

where δ is the threshold.

V. EXPERIMENTS

In this section, we evaluate the proposed source code

representation on two tasks of code classification (Task 1) and

clone detection (Task 2), and compare it with several state-of-

the-art approaches.

A. Dataset Description

There are two public dataset benchmarks for code classifica-

tion and clone detection. One dataset consists of simple C pro-

grams collected from the Online Judge (OJ) system and made

public by Mou et al. [2]2. The programs in OJ benchmark are

for 104 different programming problems. Programs have the

same functionality if they aim to solve the same problem.

The other dataset BigCloneBench (BCB) was provided by

Svajlenko et al. [47] for evaluating code clone detection tools.

BCB consists of known true and false positive clones from

a big data inter-project Java repository. As benchmarks, the

two datasets have been used by many researchers concerning

on code similarity [48], [49] and clone detection [5], [6]. The

basic statistics corresponding to our two tasks are summarized

in Table I.

B. Experiment Settings

We used the pycparser3 and javalang tools4 to obtain ASTs

for C and Java code, respectively. For both tasks, we trained

embeddings of symbols using word2vec [42] with Skip-gram

2https://sites.google.com/site/treebasedcnn/
3https://pypi.python.org/pypi/pycparser
4https://github.com/c2nes/javalang
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TABLE I
THE STATISTICS OF DATASETS USED FOR OUR TWO TASKS

Code Classification Clone Detection

Dataset OJ Dataset OJ BCB
#Programs 52,000 #Code fragments 7,500 59,688
#Classes 104 %True clone pairs 6.6% 95.7%
Max tokens 8,737 Max tokens 2,271 16,253
Avg. tokens 245 Avg. tokens 244 227
Max AST depth 76 Max AST depth 60 192
Avg. AST depth 13.3 Avg. AST depth 13.2 9.9
Max AST nodes 7,027 Max AST nodes 1,624 15,217
Avg. AST nodes 190 Avg. AST nodes 192 206

algorithm and set the embedding size to be 128. The hidden

dimension of ST-tree encoder and bidirectional GRU is 100.

We set the mini-batch size to 64 and a maximum of 15 and 5

epochs for the two tasks, respectively. The threshold is set to

0.5 for clone detection. For each dataset, we randomly divide it

into three parts, of which the proportions are 60%, 20%, 20%
for training, validation and testing. We use the optimizer

AdaMax [46] with learning rate 0.002 for training. All the

experiments are conducted on a server with 16 cores of

2.4GHz CPU and a Titan Xp GPU.

C. Evaluation on Two Tasks

1) Source Code Classification: We conduct extensive ex-

periments on the OJ dataset. Apart from the state-of-the-art

model TBCNN [2], we also take into account of traditional

and other neural network based approaches including SVMs

with statistical features, TextCNN [50], LSTM [51], LSCNN

[52] and PDG-based Graph embedding approaches [25], [26]

as follows:

• SVMs. We use the linear SVMs with traditional IR

methods. TF-IDF, N-gram and LDA are used to extract

textual features. The corpus are tokens extracted from

the source code files. For N-gram, we set the number

of grams to 2 and the number of max features to 20

thousand. The number of topics for LDA is 300.

• TextCNN and LSTM. These two models are widely used

for sentence classification in NLP. We adapt them for this

task with token sequences by treating code fragments as

plain texts. For TextCNN, the kernel size is set to 3 and

the number of filters is 100. For LSTM, The dimension

of hidden states is set to 100.

• LSCNN. Originally proposed for bug location [52],

LSCNN extracts program features with CNN for state-

ment embedding and uses LSTM for statement sequences.

• PDG based Graph Embedding. Most recently some

studies [25], [26] construct program graphs by consid-

ering control flow and data flow dependencies, and adopt

graph embedding techniques such as HOPE [24] and

Gated Graph Neural Network (GGNN) [53] for code

representation. Although original code fragments in the

OJ dataset is incomplete and uncompilable, they can be

manually complemented by adding standard C header

files and third-party libraries and we use an open-source

tool Frama-C5 to get their PDGs. Based on the PDGs,

we represents nodes of PDGs by the numerical ID of

statements in HOPE [26], and average the embeddings

of all tokens in each PDG node as its initial embedding

[25] in GGNN6. After graph embedding, we add a max

pooling layer on all nodes of PDGs to obtain the final

code representation.

To evaluate the effectiveness of source code classification, we

use the test accuracy metric, which computes the percentage

of correct classifications for the test set.
2) Code Clone Detection: There are generally four different

types of code clones [54]. Type-1 is identical code fragments

in addition to variations in comments and layout; Apart from

Type-1, Type-2 is identical code fragments except for different

identifier names and literal values; Type-3 is syntactically

similar code snippets that differ at the statement level; Type-

4 is syntactically dissimilar code snippets that implement the

same functionality. For BCB, the similarity of clone pairs is

defined as the average result of line-based and token-based

metrics [47]. The similarity of two fragments of Type-1 and

Type-2 is 1. Type-3 is further divided into Strongly Type-3

and Moderately Type-3, of which the similarities are in range

[0.7, 1) and [0.5, 0.7), respectively. The similarity of Type-4

is in range [0, 0.5) and its clone pairs take up more than 98%
over all clone types. While in OJ, two programs for the same

problem form a clone pair of unknown type.

As Table I shows, similar to the previous work [6], we

choose 500 programs from each of the first 15 programming

problems in OJ, namely OJClone. It will produce more than

28 million clone pairs which is extremely time-consuming for

comparison, thus we randomly select 50 thousand samples

instead. Likewise, we parsed nearly 6 million true clone pairs

and 260 thousand false clone pairs from BCB. We compare

our approach with existing state-of-the-art neural models for

clone detection including RAE [5] and CDLH [6]. For RAE,

the unsupervised vectors of programs are obtained by the

authors’ open-source tool7 and we use them for supervised

training, namely RAE+. Its configurations are set according

to their paper. CDLH is not made public by the authors, so we

directly cite their results from the paper since their experiments

share the same datasets with ours. Since other traditional

clone detection methods like DECKARD [55] and common

neural models such as doc2Vec8 have been compared in RAE

and CDLH, we omit them in our experiment. Similar to the

experiments on code classification, we also compare with the

two PDG-based Graph embedding approaches in OJClone.

However, BCB mainly contains incomplete and uncompilable

method-level code fragments, we fail to get their PDGs.

Since the code clone detection can be formulated as a

binary classification problem (clone or not), we choose the

commonly-used Precision (P), Recall (R) and F1-measure (F1)

as evaluation metrics.

5https://frama-c.com/
6https://github.com/Microsoft/gated-graph-neural-network-samples
7https://github.com/micheletufano/AutoenCODE
8https://radimrehurek.com/gensim/models/doc2vec.html
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TABLE II
COMPARED APPROACHES FOR CODE CLASSIFICATION

Groups Methods Test Accuracy(%)

SVMs SVM+TF-IDF 79.4
SVM+N-gram 84.7
SVM+LDA 47.9

Neural models TextCNN 88.7
LSTM 88.0
TBCNN 94.0
LSCNN 90.9
PDG+HOPE 4.2
PDG+GGNN 79.6

Our approach ASTNN 98.2

D. Research Questions and Results

Based on the evaluation on the two tasks, we aim to

investigate the following research questions:

RQ1: How does our approach perform in source code
classification? In the task of code classification, the samples

are strictly balanced among the 104 classes and our evaluation

metric is the test accuracy. Experimental results are provided

in Table II. The best results are shown in bold.

We can see that traditional methods such as SVMs perform

poorly in our experiment. These methods mainly rely on the

semantics of tokens or shallow semantics features of programs

to distinguish the code functionalities, but the tokens used in

OJ dataset are mostly arbitrary. For example, the names of

identifiers are usually a, i, j , etc. Thus most tokens contribute

little to recognize the functionalities.

For those neural models, the results of TextCNN and

LSTM are better than token-based methods above because

they can capture some local functional features. For example,

the semantics of a short scanf statement can be captured by

the sliding window of TextCNN or the memory cell unit in

LSTM. As a neural network based on entire ASTs, TBCNN

significantly improves the accuracy since it uses the convo-

lution sliding window over ASTs to capture tree structural

features. LSCNN has a relatively competitive performance

among existing neural models. This can be inferred that

the sequential information of statements does contribute to

recognize the functionality, but the accuracy is still lower than

TBCNN because it cannot capture the rich structural seman-

tics. Graph-based approaches including HOPE and GGNN

on PDGs perform poorly among the above approaches. In

particular, PDG with HOPE gets an accuracy of only 4.2%,

because the nodes of PDGs are represented by their numerical

ID which miss lexical knowledge and only focuses on the

explicit dependency information in a high abstraction level

[26]. PDG with GGNN uses tokens for node embedding and

has an improvement, but still lacks the syntactical information.

Among all the approaches, our model achieves the best

accuracy. Specifically, our model improves TBCNN by 4.2%,

since our ASTNN model performs RvNN on much smaller

ST-trees than original ASTs. Unlike existing neural models,

our model does not use the sliding window and binary tree

TABLE III
CODE CLONE DETECTION MODELS ON BCB

Type RAE+ CDLH ASTNN

P R F1 P R F1 P R F1

BCB-T1 100 100 100 - - 100 100 100 100

BCB-T2 86.5 97.2 91.5 - - 100 100 100 100

BCB-ST3 79.9 72.2 75.9 - - 94 99.9 94.2 97.0

BCB-MT3 66.4 74.8 70.3 - - 88 99.5 91.7 95.5

BCB-T4 76.3 58.7 66.3 - - 81 99.8 88.3 93.7

BCB-ALL 76.4 59.1 66.6 92 74 82 99.8 88.4 93.8

TABLE IV
CODE CLONE DETECTION MODELS ON OJCLONE

Metric RAE+ CDLH PDG+HOPE PDG+GGNN ASTNN

P 52.5 47 76.2 77.3 98.9
R 68.3 73 7.0 43.6 92.7
F1 59.4 57 12.9 55.8 95.5

transformation. Instead, it captures knowledge about AST

statements and the sequential dependencies between state-

ments.

RQ2: How does our approach perform in code clone
detection? In this research question, we want to explore

whether our model is effective on the challenging problem of

code clone detection. We conduct experiments on the OJClone

and BCB datasets.

From OJClone, we sample 50 thousand clone pairs for

experiments. While from BCB, we firstly sample 20 thousand

false clone pairs as the negative samples. For Type-1 to

Strongly Type-3, we fetch all the true clone pairs belonging

to that type as positive samples since their numbers are less

than 20 thousand. For other types, we sample 20 thousand true

clone pairs. Then we turn them into five groups to detect each

type.

The detailed results are shown in Table III (BCB) and IV

(OJClone). In Table III, as mentioned before, we cite the

results of CDLH from [6]. Since there are no P and R values

reported for detailed clone types, we fill them by “-” instead.

BCB-ST3 and BCB-MT3 represent Strongly Type-3 and Mod-

erately Type-3 in BCB, respectively, and so on. The BCB-

ALL is a weighted sum result according to the percentage

of various clone types [6]. In Table IV, we compare with two

more PDG-based Graph embedding methods PDG+HOPE and

PDG+GGNN as described before.

We first discuss the performances of RAE+, CDLH, and our

ASTNN model on BCB. Obviously, all the three approaches

are quite effective in recognizing the similarities of two code

fragments in Type-1 and Type-2, since both code fragments

are almost the same excepting different identifier names,

comments and so on. While for other types of BCB, RAE+

performs much worse than the other two approaches since it

has no mechanism on memorizing history information such as

LSTM or GRU in CDLH and ASTNN. Comparing CDLH with

our approach, we can see that ASTNN outperforms CDLH in

terms of F1-measure especially for Type-4. In BCB Type-4,

false clone pairs share syntactical similarity as well, which
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TABLE V
COMPARISON BETWEEN THE PROPOSED MODEL AND ITS DESIGN

ALTERNATIVES

Description
Code Classification Clone Detection

Accuracy F1( OJClone) F1(BCB)
AST-Full 96.2 87.7 85.7

AST-Block 97.3 92.9 90.2
AST-Node 96.7 92.1 87.4

Removing Pooling-I 98.1 95.2 93.1
Removing Pooling-II 96.0 94.0 90.0

LSTM instead of GRU 97.8 95.6 92.3
Long code fragments 95.7 92.9 93.5

ASTNN 98.2 95.5 93.8

is validated to be coincidental [47] and is challenging to be

distinguished. This indicates our ASTNN model can capture

more subtle syntactical difference and complex semantics than

CDLH by overcoming its limitations described in Section III

and capturing sequential naturalness of statements.

In OJClone, similar results can be observed by RAE+ and

our model. However, CDLH performs much worse than on

BCB. Unlike BCB, the variable names of programs in OJClone

are usually meaningless, thus CDLH may miss a lot of lexical

information and can only capture some syntactical informa-

tion. By contrast, our ASTNN model can further measure

the functional similarities by learning more local syntactical

knowledge and the global sequential naturalness among state-

ments. Similar to code classification, we also compare with

PDG-based Graph embedding techniques HOPE and GGNN.

They achieve worse performance than our ASTNN model due

to the facts mentioned in the last research question.

RQ3: What are the effects of different design choices for
the proposed model? We conduct experiments to study how

different design choices affect the performance of the ASTNN

model on the two tasks. As shown in Table V, we consider

the following design choices:

Splitting granularities of ASTs. Given a large AST, there

are many ways to split it into different sequences of non-

overlapping small trees. The two extreme ways are treating

the original full AST as one special subtree (AST-Full), or

extracting all nodes of the AST as special “trees” (AST-

Node). Besides the statement level splitting, another possible

way (AST-Block) is to split the AST according to blocks

(compound statements that include multiple statements within

the same brace pairs). After splitting, the follow-up encoding

and bidirectional GRU processings are the same as those in

ASTNN. We can see that AST-Block and ASTNN outperform

both extreme splitting approaches of AST-Full and AST-Node.

Our ASTNN model achieves the best performance, as analyzed

in Section III, this is because it has a good trade-off between

the size of ST-tree and the richness of syntactical information.

Pooling. In our ASTNN model, we use the max pooling

on ST-trees in the statement encoder (Pooling-I) and the max

pooling layer on the statement sequences after the recur-

rent layer (Pooling-II) as described in Section III. We study

whether the two pooling components affect the performance or

not by removing them and directly using the last layer hidden
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Fig. 5. The time cost of different batching methods

states. From the table, we can see that the pooling on statement

sequences provides a comparatively significant performance

boost, whereas pooling on ST-trees matters little. This shows

that different statements of the same code fragments actually

have different weights.

LSTM. In the recurrent layer of our proposed model, we

use GRU by default. If replacing GRU by LSTM, the results

indicate that overall LSTM has a slightly poor but comparative

performance with GRU. We prefer GRU in our ASTNN model

since it can achieve more efficient training.

Long code fragments. Considering only long code frag-

ments which have more than 100 statements, the percentage

of long code fragments is 1.6% in OJ, and the percentage of

clone pairs which include at least one long code fragment is

4.1% in BCB. From the table, we can see that our ASTNN

model can also deal with long sequences of statements well

and the performance on long code fragments remains good.

RQ4: To what extent does the proposed dynamic batching
algorithm contribute to the efficiency? As we described in

Section III, our statement encoder can accept batch samples

with arbitrary tree structures as inputs, thus can accelerate the

speed of training. However, it is still unknown how efficient

this algorithm is. In order to test and verify its capability,

we train our model in three different ways: totally without

batching (TWB), batching only on the recurrent layer (PBR),

batching on the recurrent layer and the encoding layer by using

our dynamic batching algorithm in Algorithm 1 (DBA). In

detail, TWB means calculating one sample each time; PBR

accepts batch samples, but encodes only one ST-tree at each

time and performs batching on the recurrent layer by padding

sequences of ST-tree vectors; DBA encodes all batch samples

of ST-trees at once and then deals with ST-tree sequences as

PBR does. The experiment is conducted for Task 1 and the

time cost is the average running time of training and testing

for each epoch.

In the experiment, the batching has no effect on the perfor-

mance but changes the efficiency a lot. We find that the average

time required by TWB is 71.2 minutes per epoch. From Figure

5 we can see that both PBR and DBA speed up the training

and testing process when compared with TWB. DBA shows

a significant improvement over the others. Furthermore, DBA
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runs 12+ times faster than PBR and 20+ times faster than TWB

when the batch size is 64. This confirms that the proposed

batching algorithm makes our ASTNN model more efficient.

VI. RELATED WORK

A. Source Code Representation

How to effectively represent source code is a fundamental

problem for software engineering research.

Traditional IR and machine learning methods have been

widely used for textual token-based code representation. Pro-

grams are transformed to regularized token sequences for code

clone detection [3]. SourcererCC [4] has an improvement by

exploiting token ordering along with an optimized inverted-

index technique. Besides the lexical information, Deckard [55]

enriches programs with some syntax-structured information

for clone detection as well. Based on the statistical and

machine learning methods, the n-gram model [1] and SVM

[45] are used for classifying source code authorship and

domains. Maletic et al. [56] adopts LSI to identify semantic

similarities of code fragments, and the cohesion of classes in

software is evaluated by LDA [15].

Recently deep learning based approaches have attracted

much attention to learn distributed representation of source

code [57]. Raychev et al. [58] adopts RNN and n-gram model

for code completion. Allamanis et al. [59] uses a neural

context model to suggest method and class names. For defect

prediction, semantic features are extracted from source code by

a deep belief network [60]. DeepBugs [61] represents code via

word2vec for detecting name-based bugs. In order to capture

the syntactical information of ASTs, White et al. [5] exploits

a recursive auto-encoder over the ASTs with pre-trained token

embeddings. TBCNN [2] uses custom convolutional neural

network on ASTs to learn vector representations of code

snippets. CDLH [6] incorporates Tree-LSTM to represent

the functionality semantics of code fragments. Furthermore,

Allamanis et al. [25] performs Gated Graph Neural Networks

on program graphs which track the dependencies of the same

variables and functions to predict variable names and detect

variable misuses. DeepSim [62] encodes code control flow

and data flow into a semantic matrix for measuring code

functional similarity. Multiple different code representations

such as identifiers, CFGs and bytecodes can also be integrated

by the ensemble learning technique [26]. Compared with these

neural networks, our model focuses on improving existing

AST-based methods and can capture the lexical, statement-

level syntactical knowledge and the sequential naturalness of

statements.

B. Deep Learning in Software Engineering

In recent years, there are many emerging deep learning

applications in software engineering. DeepAPI [43] uses a

sequence-to-sequence neural network to learn representations

of natural language queries and predict relevant API se-

quences. Lam et al. [63] combines deep neural network with

IR technique to recommend potential buggy files. Xu et

al. [64] adopts word embeddings and convolutional neural

network to predict the related questions in StackOverflow. The

neural machine translation is used to automatically generate

commit messages [10]. Guo et al. [65] proposes a RNN based

neural network to generate trace links. A joint embedding

model is used in code search to map source code and natural

language descriptions into a unified vector space for evaluating

semantics similarity [66]. The above related work mainly uses

neural network models to understand software-related natural

language texts for various tasks while we focus on the neural

representation of source code.

VII. THREATS TO VALIDITY

There are three main threats to the validity. First, the OJ

dataset is not collected from the real production environment.

However, BigCloneBench includes code snippets of real-world

Java repositories from SourceForge [47], which reduces this

threat. The second threat is about the construction of OJClone.

As we described, programs under the same problem belong

to a clone pair. This leads to the uncertainty about whether

they are true clone pairs, although similar practice has been

done by previous work [6]. Nevertheless, BigCloneBench is

also used for validation where the code clones are inspected

manually. Therefore, we believe it is of little influence on ex-

perimental results. The last threat is that we cannot reproduce

the approach of CDLH due to some details missed in that

paper. Alternatively, we construct the same datasets described

in their paper to reduce this threat. We will make supplement

for comparison when the CDLH tool is available.

VIII. CONCLUSION

In this work, we have presented an efficient AST-based Neu-

ral Network (ASTNN) to learn vector representations of source

code fragments, which can capture the lexical, statement-

level syntactical knowledge and naturalness of statements.

The model decomposes large ASTs of code fragments into

sequences of small statement trees, obtains statement vectors

by recursively encoding multi-way statement trees, and finally

learns the vector representations of code fragments by leverag-

ing the naturalness of statements. We have evaluated ASTNN

on two common program comprehension tasks: source code

classification and code clone detection. The experimental

results show that our model significantly outperforms existing

approaches. Our code and experimental data are publicly

available at https://github.com/zhangj1994/astnn.

In the future, we will further evaluate the proposed model

on larger-scale datatsets in different programming languages

and for a variety of software engineering tasks. We will also

explore other neural models to capture more deep semantics

of source code.
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