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ABSTRACT

Deep Neural Networks (DNNs), an emerging software technology,
have achieved impressive results in a variety of fields. However, the
discriminatory behaviors towards certain groups (a.k.a. unfairness)
of DNN models increasingly become a social concern, especially
in high-stake applications such as loan approval and criminal risk
assessment. Although there has been a number of works to improve
model fairness, most of them adopt an adversary to either expand
the model architecture or augment training data, which introduces
excessive computational overhead. Recent work diagnoses respon-
sible unfair neurons first and fixes them with selective retraining.
Unfortunately, existing diagnosis process is time-consuming due to
multi-step training sample analysis, and selective retraining may
cause a performance bottleneck due to indirectly adjusting unfair
neurons on biased samples. In this paper, we propose Responsible
UNfair NEuron Repair (RUNNER) that improves existing works in
three key aspects: (1) efficiency: we design the Importance-based
Neuron Diagnosis that identifies responsible unfair neurons in one
step with a novel importance criterion of neurons; (2) effective-
ness: we design the Neuron Stabilizing Retraining by adding a loss
term that measures the activation distance of responsible unfair
neurons from different subgroups in all sources; (3) generalization:
we investigate the effectiveness on both structured tabular data
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and large-scale unstructured image data, which is often ignored in
prior studies. Our extensive experiments across 5 datasets show
that RUUNER can effectively and efficiently diagnose and repair the
DNNs regarding unfairness. On average, our approach significantly
reduces computing overhead from 341.7s to 29.65s, and achieves
improved fairness up to 79.3%. Besides, RUNNER also keeps state-
of-the-art results on the unstructured dataset.
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1 INTRODUCTION

Deep neural networks (DNNs) have showcased their great poten-
tial in various software applications across many fields such as
image classification [27], speech recognition [58], natural language
processing [57], and software engineering [66]. However, DNNs
are also unveiled to be unreliable and vulnerable in terms of some
properties such as robustness, privacy, and fairness, which severely
restricts the usability of deep learning [9, 29, 30, 37, 38, 53, 68].
Among these properties, as the growing societal impact, fairness is
attracting more and more attention, especially in high-stake appli-
cations such as criminal justice, loan approval, and credit scoring.
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Figure 1: The group fairness problem in the task of crime risk
prediction. The crime risk for the male group is far higher
than that of females (i.e., 82.33% versus 60.05%), though they
have similar attributes except for gender. After repair, a fair
model should demonstrate equal prediction qualities.

For example, a recidivism predictor based on the COMPAS dataset is
likely to regard African-American offenders with higher risk scores
[13]. Generally, there are two main kinds of fairness notations in
existing DNN literature, including group fairness [44, 47] and in-
dividual fairness [21]. This work focuses on the group fairness of
DNNs since it is prevalent in real-world applications and is difficult
for automated repair, as illustrated in Fig. 1.

Most of the existing approaches for automated unfair DNNs
repair are based on adversary training [1, 16, 65]. These adversary-
based repair techniques usually build on the observation that opti-
mizing for both accuracy and fairness can sometimes lead to conflict-
ing objectives during training, and repair unfairness by introducing
additional adversary modules to the DNN model or generating
adversarial samples to retrain the DNN model. For example, FAD
[1] adds a new hidden layer to the architecture in order to enable
concurrent adversarial optimization for fairness and accuracy. Al-
ternatively, Ethical Adversaries [16] leverages the adversary model
to generate adversarial examples, which are further integrated into
the training data to repair the unfairness problem. However, such
complex training protocols incur a significantly higher comput-
ing overhead and complicated hyperparameter tuning, and mode
collapse is also revealed to be an intractable problem for these ap-
proaches [12]. Furthermore, adversary-based techniques serve as
a black-box algorithm, which means that the decision process is
unknown to developers, and thus weakens the practicality. To miti-
gate this problem, the most recent work FAIRNEURON [24] conducts
a two-stage scheme: 1). diagnose neurons first and 2). selectively
retrains the target model, to repair the unfairness. More specifically,
this scheme diagnoses the DNN with a neural network slicing tech-
nique by identifying responsible unfair neurons that select sensitive
attributes to make predictions, and then cluster samples that trigger
the selection of sensitive attributes. It retrains the unfair neurons
on the clustered biased samples, in the purpose of enforcing unfair
neurons to consider all features, and thus mitigates the unfairness
problem without an adversary model.

Trovato and Tobin, et al.

Despite remarkable progress, however, prior works still have
several major limitations. Firstly, although FAIRNEURON is more
efficient for retraining, the diagnosis process is heavyweight as
it requires multiple steps to conduct the profiling, forward, and
backward analysis for all training and interested samples, which
results in an overall inefficiency. Secondly, since FAIRNEURON se-
lectively retrains the model on clustered bias samples, the unfair
neurons may still pay more attention to sensitive attributes rather
than all features, leading to a bottleneck in terms of unfairness re-
pair. Thirdly, existing studies on fixing the group fairness problem
only consider structured (i.e., tabular) data or unstructured data
(i.e., images) with small scale and size such as MNIST, which could
be a gap in real-world applications.

In this paper, we propose Responsible UNfair NEuron Repair
(RUNNER) that consists of two main phases: Importance-based
Neuron Diagnosis and Neuron Stabilizing Retraining. Specifically,
for the efficient diagnosis, the Importance-based Neuron Diagnosis
phase includes a novel criterion design based on neuron importance,
which allows for the identification of responsible unfair neurons
in DNNs without the need for extra multi-step analysis. Also, dif-
ferent from FairNeuron which identifies conflict paths composed
of both neurons and synapses, our method only needs to identify
the responsible unfair neurons. For effective retraining, instead
of indirectly adjusting the unfair neurons, we design the Neuron
Stabilizing Retraining by adding a loss term that measures the
activation distance of responsible unfair neurons from different
subgroups, which directly reduces discrimination on these neurons
and improves model fairness. On top of the two steps, we design
an iterative repair strategy that iteratively updates the model to
further enhance the fairness.

We evaluate our approach on five popular datasets, including
four tabular datasets (i.e., Adult, COMPAS, Credit, and LSAC) and
one large-scale dataset with high-resolution images (i.e., CelebA).
The experiment results demonstrate that RUNNER is more efficient
and effective, and has a better generalization capability than all
the existing methods. On average, RUNNER significantly reduces
the computing overhead from 341.7s to 29.65s, while also achiev-
ing improved fairness by 79.3% at most. Moreover, our approach
also generalizes well in unstructured image domains and achieves
state-of-the-art fairness enhancement. In summary, our main con-
tributions are as follows. @ We first build Importance-based Neuron
Diagnosis to efficiently identify the responsible unfair neurons. @
We propose Neuron Stabilizing Retraining to directly repair the
responsible unfair neurons to effectively improve the fairness of
DNNs. ® We propose a novel DNN unfairness repair framework
RUNNER that can coordinate the diagnosis and retraining pro-
cesses by iteratively updating the target model. @ We conduct
comprehensive experiments on mainstream datasets. The exten-
sive comparison with existing methods confirms that RUNNER is
lightweight, effective, and compatible with the unstructured image
domain.

2 BACKGROUND

In this section, we briefly introduce the relevant background in-
cluding Deep Neural Networks (DNNs), popular group fairness
measures, and slicing & repair in DNNs.
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2.1 Deep Neural Networks

A DNN typically consists of multiple layers of neurons [56], which
can be formally defined as follows.

Definition 2.1. A Deep Neural Network (DNN) f consists of L
multiple layers (ly, Iy, . .., IL—1), where [y is the input layer, I; 1 is
the output layer, and I3, ..., I; 5 are hidden layers. The inputs of
each layer are the outputs of the previous layer.

In this work, we mainly focus on the classifier f : X — Y, where
X is a set of inputs and Y is a set of classes. Given an input x € X,
we use f7(x) to represent the internal features extracted by the layer
I (i.e., the output values of neurons at [). § represents the DNNs
output (i.e., f(x)) and y is the label of the given input x. In the real
world, the samples could be divided into subgroups according to
certain sensitive attributes a € A such as gender and race. Without
loss of generality, we consider the binary classification and binary
attribute setup, i.e., y € {0,1} and a € {0, 1}. For example, a = 0
and a = 1 could represent males and females, respectively.

2.2 Group Fairness Evaluation Metrics

Fairness is a multifaceted and intricate concept that has varying
definitions depending on the particular context or objective being
considered. In general, fairness can be divided into two categories:
individual fairness [68, 70], which measures whether individuals
with similar profiles (i.e., only different in protected attributes) are
treated with equity by the learned model, and group fairness [24],
which examines whether subpopulations with different sensitive
attributes are treated with equity. For instance, considering an
online shopping recommendation system, all customers should
be treated with equity, which requires individual fairness. On the
other hand, for an Al-powered hiring system, it is crucial to treat
applicants with different sensitive attributes (such as gender) with
equity, making group fairness a relevant concern. At a group level,
a fair outcome demands the existence of parity between different
protected groups in DNNG, such as those defined by gender or race.
In this work, we focus on group fairness and follow the existing
works to consider two metrics to evaluate fairness: Demographic
Parity [22] and Equalized Odds [26].

Demographic Parity (ADP) measures the difference in the proba-
bility of favorable outcomes (i.e., higher prediction qualities which
are evaluated by accuracy evaluation measures) between unprivi-
leged groups ((i.e., groups of higher prediction qualities)) and priv-
ileged groups (i.e., groups of lower prediction qualities). Demo-
graphic Parity is achieved when individuals from both categories
are predicted to fall into the positive class at the same rate. It is
noteworthy that this statistic ignores the ground truth y. Demo-
graphic parity disqualifies the ideal predictor when the base rates
p(yla) between the two groups are different [25].

ADP = |P(g = 1|a =0) - P(§ = 1|a = 1)| Y]

Equalized Odds (AEO) is measured based on the true positive
rate TPR,=4 = P(§ = 1la = A,y = 1) and the false positive rate
FPRy=p = P(§ = 1la = A,y = 0) for A € A. The measure expects
favorable outcomes to be independent of the sensitive attribute,
given the ground-truth prediction, which can be formulated as
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P(g=1la=0y=Y)=P(g=1la=Ly=Y)forY € Y. To evalu-
ate Equalized Odds, AEO combines the difference of TPR and FPR
across two sensitive groups as where ATPR = |[TPR;=o — TPR,=1|
and AFPR = |FPR;=o — FPR4=1|.

AEO = ATPR + AFPR. (2)

Under the above definitions, ADP closing to 0 and AEO closing
to 0 indicate fair classification results.

Note that the demographic parity (ADP) and equality of odds
(AEO) have conflicting natures because of their distinct principles
and applicability to different scenarios, making it unreasonable to
satisfy both simultaneously. Specifically, a predictor Y achieves de-
mographic parity when it is independent of the protected attribute
Z. Conversely, a predictor ¥ satisfies equality of odds when it is
conditionally independent of the protected attribute Z given the
ground truth Y. However, under most scenarios, the independence
between Y and Z is contradictory with the independence between
Y and Z conditioned on the ground truth Y. ADP and AEO have
inherent trade-offs because of their contradictory natures. Such fair-
ness metrics have inherent trade-offs due to their conflicting spirits
[34]. Following the common setups in previous work [6, 14, 59, 65],
we design algorithms to enhance ADP and AEO metrics separately
and conduct the corresponding measuring independently.

2.3 DNNs Slicing and Repair

Program slicing has been widely applied in a range of software
engineering tasks, especially in software debugging [61]. Similarly,
DNNs could also be regarded as a type of program that is con-
structed by artificial neurons. As DNNs easily suffer from fairness
issues, localizing the DNNs’ defects (i.e., responsible neurons for
these unfairness issues) could also contribute to the analysis and
repair. However, traditional program-slicing techniques cannot be
directly applied to DNNs. Therefore, Zhang et al. [69] propose
NNSlicer, the first approach for slicing deep neural networks based
on data flow analysis. It identifies the neurons and synapses that
contribute the most to the slicing criterion by recursively back-
tracking from the output neurons, which form the slice.

Inspired by it, a recent work FAIRNEURON [24] proposes to iden-
tify responsible neurons for the unfairness through neural net-
work slicing. The neurons are further leveraged to cluster samples
to achieve selective retraining for fairness repair. Even though
FairNeuron has demonstrated its efficiency and effectiveness for
unfair DNN repair, there are still two main limitations. First, for
diagnosis, FairNeuron requires a profiling step, a forward analysis
step, and a backward analysis step to identify the responsible unfair
neurons. In the profiling step, FairNeuron needs to feed all train-
ing samples into the model to calculate the average behavior of a
neuron. The calculation process involves an inference process for
all training samples which is time-consuming. The forward anal-
ysis step and the backward analysis step require feeding samples
of interest into the model one by one. The two steps could also
cause huge time overhead if the interested sample size is large. The
drawbacks in these three steps make the diagnosis phase highly
inefficient. Second, when retraining, FairNeuron performs sample
clustering to locate the biased samples first. However, the sample
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clustering process might fail to accurately locate all the biased sam-
ples. Such an inaccurate selection could lead to the introduction of
bias during retraining. Moreover, the retraining process employs a
dropout strategy with the same training loss, which is sub-optimal.
On one hand, it updates unfair neurons by training on clustered
biased samples while keeping the optimization objective (i.e., the
loss) unchanged, potentially resulting in unchanged unfair neurons.
On the other hand, the dropout ignores neurons during the training
phase of a certain set of neurons which is chosen at random. As a
result, these ignored unfair neurons will not be updated.

In our work, to overcome the above limitations, we design a
novel efficient criterion to uncover responsible unfair neurons that
reduces the calculation overhead, which is further combined with
the quantification of neuron discrimination in the effective iterative
repairing process, to reduce bias for all parameters in the model
and ensure the generalization to the unstructured image domain.

3 METHODOLOGY
3.1 Overview

The RUNNER consists of two main components: Importance-based
Neuron Diagnosis and Neuron Stabilizing Retraining, as illustrated
in Figure 2. In the diagnosis phase, RUNNER uses an importance-
based extraction method to identify responsible unfair neurons,
which significantly reduces the computational burden. In the re-
training phase, we focus on the responsible unfair neurons and
mitigate unfair behaviors by introducing new loss terms specifi-
cally designed for these neurons. However, retraining the model
to repair current unfair neurons may result in the emergence of
a new set of unfair neurons since all of the model parameters are
updated after the retraining. To address this issue, we propose an
iterative repair approach that involves diagnosing and retraining
at each iteration in the repair process.

3.2 Importance-based Neuron Diagnosis

The main goal of responsible unfair neuron extraction is to identify
neurons that have a significant impact on producing an unfair pre-
diction in the target model. The FAIRNEURON method accomplishes
this by first conducting a profiling process and a forward analysis
to identify "unfair" neurons, followed by a backward analysis to
further select "responsible” neurons. To reduce the time cost, we
need to extract the neurons both responsible and unfair in one
single step.

Intuitively, instead of taking multiple steps, we can directly cal-
culate the importance of each neuron regarding ADP and AEO
to distinguish which neurons cause the unfair prediction results.
The neurons with high unfairness importance (i.e., importance to
ADP and AEO) values should be regarded as the responsible un-
fair neurons. However, as discussed in Section 2.2, these measures
are based on prediction rates P(gjla = 0) and P(gla = A,y = Y).
While they are designed to evaluate group fairness, they cannot be
propagated in a backward way and are not suitable for guiding the
identification of responsible unfair neurons in DNNs. To address
this challenge, we propose using the relaxed counterparts intro-
duced by [45], denoted as Gappp,g. These relaxed measures can
be directly used to calculate neuron unfairness importance via a
backward propagation approach. The relaxed counterparts are as
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follows:

Gappp = |Ex~p, (f(x)) = Ex-p, (f(x))], ®3)
where Py = P(x|a = 0) and P; = P(x|a = 1) are the distributions of
x condition on a = 0 and a = 1, respectively, and the function E(-) is
to calculate the expectation under the distributions.

Gapro = D [Feopy(FG) ~Eppr(F). @

ye{0,1}

where Pé = P(x|a = 0,y = 1) denotes the distribution of x condition
on the a = 0 and y = 1, and we have similar notations for Pg R P? R
P11 if we set the DNN for a binary classification task and have the
label y € {0, 1}.

To estimate the neuron unfairness importance UI£n of neuron
m on layer [ of model f regarding Gappp/g for a group of data,
we can calculate the squared difference of the Gappp/po before and
after removing the neuron m:

UL, = (Gappp/pof (W) — Gapppeof (Wlwh, = 0)%  (5)

where W denotes the parameters of all neurons in the model and
an is the parameters of neuron m on layer I. One straightforward
approach to calculate UI£n for each neuron in the DNN model is
estimating the changes in Gappp/ after removing each neuron
m (i.e., calculate Equation 5 for all neurons). However, this method
is time-consuming for two reasons. To calculate the UI for each
neuron, we must remove each neuron one by one. For larger models
with many parameters, this calculation becomes computationally
prohibitive.

To tackle these two key challenges, we propose to use the first-
order Taylor expansion to optimize Eq. 5. Using the first-order
Taylor expansion, the neuron unfairness importance estimation
can be simplified to:

dGap
1 DP/EO [ \2
Ul = (FEBPEO ., g2, ©)
owp,
9Gapppro ; i
where ] is the gradient of neuron m regarding Gapppro

when calculated on a subgroup of data. Thus, the calculation of

UL, can be simplified to only require the computing of gradient
aGapD[P/EO

With the calculated U1£n for each neuron in layer [, the neuron
unfairness importance of the layer I composed of Mj neurons could
be represented as Ul = {UIl , UIi, ey U15\41—1}'

We further determine the most responsible unfair neurons ac-
cording to the calculated neuron importance and denote them as

, which is easy to implement and has a lower time cost.

Q;C as shown below:
Qg{ = topk(wy, UIl) (7)

where w; denotes the neurons on layer ! and topk(-) represents
the top k maximum instances of the input set w; based on certain
metrics. Here we select the metric as neuron unfairness importance
UI'. We can further depict the neuron unfairness importance of
the model F as Qp = {Qlko, Q;Cl, . QiL‘l }. Noted that the number
of selected responsible unfair neurons is directly controlled by
hyperparameter k.
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Figure 2: The comparison of the processes of FairNeuron and our method RUNNER.

3.3 Neuron Stabilizing Retraining

After identifying the responsible unfair neurons, we expect to ex-
plicitly quantify and reduce the discrimination on each neuron,
instead of selecting biased samples and conducting selective train-
ing under a naive training loss. To achieve this goal, we propose
a Neuron Stabilizing Retraining method that can be easily accom-
plished by directly adding a loss term. In particular, the loss item
could measure the distance between activation values of responsible
unfair neurons when the inputs are from different subgroups. We
name the activation distance of different subgroups on individual
neuron m on layer [ as neuron discrimination and here we take the
L, distance to measure neuron discrimination §.

8(m,L, f,Po, P1) = ||Ex~po iy (X) = Ex<p, fh (O, (8)

where Py = P(x|a = 0) and P; = P(x|a = 1) are the distributions
of x condition on a = 0 and a = 1, respectively, the function E(:)
is to calculate the expectation under the distributions, and f,i, (x)
denotes the activation value of neuron m on layer [ when input
sample x. We use L. to denote the cross entropy loss item. Then,
the retraining loss item for the ADP metric could be revised as:

leL meQ!

L=Las+a), p, 8(mLf.Po.Py), ©
1 m

Correspondingly, the retraining loss item for the AEO metric
could be revised as:

leL meQ! Ye{0,1}

L=Lgs+d), > > 8(mLf PP, (10)
1 m Y

3.4 Iterative Repair

The iterative repair approach involves importance-based neuron
diagnosis and neuron stabilizing retraining in each repair iteration.
By implementing an iterative process, RUNNER can effectively
identify the responsible unfair neurons in the updated model. More-
over, this process ensures that the model is continuously updated
to mitigate neuron discrimination on each newly identified unfair
neuron.

We detail the whole training process under the ADP metric
and the AEO metric in Algorithm 1. In particular, for the AEO
metric, given a training dataset O, we first sample four groups
of samples (i.e., (Xo0, Yoo), (Xo1, Yo1), (X10, Y10) and (X11,Y11))
from the four subgroups which are split according to the protected
attribute and ground truth label (i.e., (Xqay, Yay.a € {0,1},y €
{0, 1})) in the dataset, respectively (See lines 2-5). Then, we calculate
the cross-entropy loss for these samples (See line 6). After that,
we can calculate the gradient of each neuron (i.e., parameter wfn)
w.r.t. the Gapgo (See line 9). Moreover, we select the responsible

unfair neurons a)llc (see lines 10-11), and we calculate the neuron

discrimination values for ! (i.e. the L; distance between each
subgroup of data) (see lines 13-14). Finally, we integrate the repair
loss item into the loss item to update the model (see lines 16-17).

4 EVALUATION

In this section, we evaluate the performance of RUNNER. We first
outline the experimental setup and then, we introduce our evalua-
tion aiming to answer the following research questions:

e RQ1: How effective is our method to repair unfairness?

e RQ2: How efficient is our method to repair unfairness?

e RQ3: How effective is our method applied to the large-scale
dataset with high-resolution images?

e RQ4: How does the hyperparameter k in Eq. 7 influence the
repair performance?

4.1 Experimental Setup

4.1.1 Datasets and Models. In our experiments, we use four tab-
ular benchmarks (Adult, COMPAS, Credit and LSAC) and one
high-resolution large-scale dataset (CelebA) that are all for binary
classification tasks: @ Adult [19]. The dataset was done by Barry
Becker from the 1994 Census database with 48842 instances and
14 attributes. The original aim of the dataset Adult is to determine
whether a person makes salaries over 50K a year. We consider gen-
der as the sensitive attribute, and the Vanilla training will lead the
model to predict females to earn less salaries. ® COMPAS [46].
COMPAS (Correctional Offender Management Profiling for Alterna-
tive Sanctions) is a well-known commercial algorithm that judges
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Algorithm 1: RUNNER method for fairness repair.

Data: Network f with [ layers and My neurons in each layer, epoch
index set &, training data D, batch size bs, network layers L,
hyper-parameters A, learning rate 7.

// The iterative repair process for AEQ

1 fore € Edo

// Sample data subgroups from D

2 [Xoo, Yoo] < Sample(D,A=0,Y =0, bs);

3 [Xo1, Yo1] « Sample(D,A=0,Y =1, bs);

4 [X10, Y10] < Sample(D,A=1,Y =0, bs);

5 [X11,Y11] « Sample(D,A=1,Y =1, bs);

6 Lcls - Lcls(F(XOO)sYOO)) + ‘LCIS(F(XOI)’YOI) +
Las (F(X10), Y10)) + Lets (F(Xa1), Y11)5

7 Gapgo = |Ex-xgo (f (%)) = Ex-x;, (f (x))] +

|Exaxor (f (%)) = Exwxyy (f(x))]

// The Importance-base Neuron Diagnosis.
8 forl e L do

] _ 9Gap
||
10 UIfn = gin w,ln
11 Q! = topk(f,UT')
// The Neuron Stabilizing Loss.

12 form € Qi do
13 5(m, l,f, Xoo,Xl()) =

| Ex~xXo0 fria (%) = | Ex~x10 fria () |15
14 5(m, l,f,X()l,Xll) =

| Ex~xXo1 fom (%) = | Ex~xy, frma () |15
15 Lrairt =0(m, 1 f, Xoo, X10) + 8(m, 1, f, Xo1, X11)

16 L« Lcls"’ALfair;

17 60— 0-nVel

// The iterative repair process for ADP
18 fore € & do

// Sample data subgroups from D

19 [Xo,Yo] « Sample(D,A =0, bs);

20 [X1,Y1] « Sample(D, A =0,bs);

21 Leis — Las(F(Xo), Yo)) + Las(F(X1), Y1)
2 | Gappp = |[Ex<x, (f(x)) = Ex~x, (f(x))]

// The Importance-base Neuron Diagnosis.
23 forl € L do

25 UL, =gk, wh,
26 Qi = topk (f, UII)
// The Neuron Stabilizing Loss.
27 form e Qi do
28 8(m. L f.X0.X1) = || Ex-x, fin (%) = | Ex~x fin (%) |1,
29 L Lrair+=06(m, 1, f, X, X1)

30 L« Lcls +A-£fair;
31 | 0—0-nVeLl

and parole authorities use to determine whether a criminal de-
fendant is likely to commit another crime (recidivism). Based on
a 2-year follow-up research, it has been demonstrated that the
algorithm is biased against black inmates and in favor of white
defendants (i.e., who committed crimes or violent crimes after 2
years). ® Credit [20]. This dataset is to give an assessment of credit
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based on personal and financial records. In our paper, we take the
attribute gender as the sensitive attribute. @LSAC [51]. The Law
School Admissions dataset from the Law School Admissions Coun-
cil (LSAC). The target is to predict whether or not a student could
pass the bar, based on their Law School Admission Test (LSAT)
score and undergraduate GPA. Here we take the attribute gender as
the sensitive attribute. @ CelebA [43]. The CelebFaces Attributes
dataset consists of 202599 images and is to predict the attributes of
faces. We split this dataset into two subgroups according to the at-
tribute gender. Here we consider two attributes classification tasks:
1). Hairstyle classification. In this task where to predict whether
the hair in an image is wavy, the standard training would show
discrimination towards the male group (i.e., predict males as less
possible to have wavy hair); 2). Attraction Prediction. For pre-
dicting whether the face is attractive, the standard training would
result in a model prone to predict males as less attractive.
Following the previous work [24], for tabular benchmarks, we
use the MLP (multilayer perception) [10] as the classification model,
which is commonly adopted in classifying tabular data. For the
CelebA dataset, we use AlexNet [35] and ResNet-18 [28], both
of which are popular in classifying image data [2]. We show the
experimental results of predicting the attribute wavy hair using
ResNet-18 and predicting the attribute attractive using AlexNet.

4.1.2  Metrics. For fairness evaluation, we take two group fairness
metrics ADP and AEO as we introduced in the section 2.2. We use
the average precision (AP) for classification accuracy evaluation,
which is more robust to imbalanced datasets and gives a more nu-
anced view of the model’s performance compared with the accuracy
metric [31]. We also report the accuracy metric. Ideally, a fair model
should have minimized ADP or AEO while maintaining or even
improving the AP at the same time.

4.1.3 Mitigation Baselines. Following the common setups in [24],
we compare our method with several baselines: @ Vanilla. Vanilla
means the standard DNN training that is based on the empirical risk
minimization (ERM) principle and only with the cross entropy loss.
It serves as the basis to measure how different baselines improve the
fairness and keep original performance. ® Oversample [60]. This
method samples from the subgroup with rare examples more often
and adopt balanced sampling in each epoch. ® Reweighing [32]. In
this method, the tuples in the training dataset are assigned weights.
This method is identical to the Oversample method when applied
to enhance the AEO metric. Although effective for the AEO metric,
this method in [32] is not designed for the ADP. The reweighing al-
gorithm for enhancing ADP is further proposed in [6]. Thus, in the
following, we combine the reweighing method proposed in [6, 32]
for comparison. @ Adversarial [1, 16, 65]. This method minimizes
the adversary’s ability to predict sensitive attributes. Since FAD [1]
and Ethical Adversaries [16] have been well compared in one recent
study [24], we consider another representative work [65] as the
Adversarial baseline, which also shows better generality and stabil-
ity.® FairNeuron [24]. FairNeuron follows a diagnosis-retraining
repair paradigm and has been demonstrated to achieve state-of-
the-art performance as reported. More details are introduced in
Section 2.3. ® FairSmote [11]. Fair-SMOTE synthetically generates
new data points for all the subgroups except the subgroup having
the maximum number of data points. As a result, all subgroups
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become of equal size (same with the maximum one). @ ROC [33].
Reject Option-based Classification (ROC), exploits the low confi-
dence region of a single or an ensemble of probabilistic classifiers
for discrimination reduction.

4.1.4 Implementation Details. For the tabular datasets, we follow
the settings in [14] for data preprocessing. The hidden size of MLP is
200. We use Adam as the learning optimizer and the batch size is set
to 1000 for the ADP metric and 2000 for the AEO metric following
the setting in [14]. The learning rate is set as 0.001. For the CelebA
dataset, we follow the settings in [14] for data preprocessing. We
use Adam as the learning optimizer and the batch size is set as
64 for the ADP metric and 128 for the AEO metric following the
setting in [14]. The learning rate is set as 0.0001.

All these experiments are conducted on the Intel Xeon Silver
4214 Processor with 2 Tesla V100 GPUs with 32GB memory. We
have implemented our tool based on Pytorch [48]. The source code
could be found on https://github.com/Ace0001/RUNNER.

4.2 ROQ1: Effectiveness of our method.

To show how our repair method outperforms other baseline meth-
ods in effectiveness, we conduct experiments on 4 widely-used pub-
lic tabular datasets including Adult, COMPAS, Credit, and LSAC.
From the Table 1 and 2, we can see that, (1) Under most ex-
perimental settings, the RUNNER and baseline methods show an
improvement in fairness scores (ADP and AEO), but at the cost of
compromising the AP values. For example, on the Adult dataset, the
Adversarial method could reduce the ADP from 0.170 to 0.066 while
the AP also decreases from 0.781 to 0.765. The experimental results
show that there might be an inherent trade-off between fairness
score and accuracy performance. (2) The Oversample method could
effectively improve fairness on the COMPAS, Credit, and LSAC
datasets. Especially on the COMPAS dataset, the AEO is reduced to
less than 1/2 of that of the Vanilla model (0.156 versus 0.348). How-
ever, this method also fails to improve fairness on the Adult dataset.
The AEO score increases from 0.096 to 0.141. The potential rea-
son could be attributed to the nature of the preprocessing method
that attempts to balance the data sizes of different subgroups. The
intention behind such an approach is to reduce discrimination in
each iteration and ensure equal influence on the model. However,
it is worth noting that adjusting the data sizes may not yield the
anticipated effectiveness in balancing the influence on the model
[60]. The Reweighing method performs slightly better than Over-
sample on the ADP metric. (3) The Adversarial method could also
consistently improve fairness and the improvement is more salient
compared with Oversample. For example, on the Adult dataset, the
ADP score 0.066 is lower than 0.148 which is achieved by the Over-
sample method. However, the Adversarial method requires complex
hyperparameters adjusting including adversary architecture, the
learning rate of the adversary, and training interval settings to
achieve a good performance. (4) FairNeuron could not effectively
improve ADP and AEO. On the LSAC dataset, the ADP score only
changes by 0.002 (from 0.007 to 0.005) while FairNeuron is not
effective under other settings. These experimental results show
that FairNeuron induces accurate models on the Adult dataset with
multiple groups but is sub-optimal in terms of fairness. FairSmote is
relatively effective for the AEO metric. For example, on the Credit
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dataset, the AEO is enhanced to 0.297. (5) The ROC method could
saliently improve fairness, especially for the ADP metric while
the AP degradation is huge. (6) Our method RUNNER consistently
achieves the best fairness performance on all datasets under both
the ADP and AEO metrics. For instance, in the Credit dataset, the
ADP score achieved by RUNNER is close to half of the best AEO
score attained by baseline methods (0.056 versus 0.109). Moreover,
the average precision (AP) value of RUNNER (0.840) is higher than
that of the Vanilla method (0.797). On the COMPAS dataset, the
ADP improvement compared with the second-best method is 79.3%
(0.006 versus 0.029) while the ap degradation is only 2.1%.

Answer to RQ1: After conducting extensive experiments
on four public tabular datasets, the results demonstrate
that RUNNER outperforms other baseline methods with
up to 79.3% improvement in fairness score, with only a
minor decline in accuracy performance.

4.3 RQ2: Efficiency of our method.

To demonstrate the superior efficiency of our repair method over
the previous approach, we measure the time usage on four widely-
used public tabular datasets, namely, Adult, COMPAS, Credit, and
LSAC. To eliminate the effect of randomness, we conducted ten
trials using random training/test data splitting for all baselines. The
Vanilla training takes 28.8s, 10.1s, 8.4s, and 15.7s on the Adult, COM-
PAS, Credit, and LSAC datasets, respectively. As a post-processing
method, the time consumption of ROC is close to that of Vanilla. In
comparison, the Oversample training takes 32.1s, 13.4s, 9.3s, and
16.5s on the same datasets, respectively, which are close to the
time consumption of the Reweighing method. Table 3 presents the
time consumption of three more effective methods (Adversarial,
FairNeuron, and RUNNER), including the number of epochs and
the time required to complete the repair for each method. The Ad-
versarial method requires an interval between training the target
model and the adversary, which lengthens the training process as
more epochs are needed for convergence. Similarly, the FairNeuron
method requires more epochs to train due to its selective training
process. For the FairNeuron method, we present the total time cost
in the "time" column, and the diagnosis time and retraining time
consumption in the "timep" and "timeg" columns, respectively. As
our method RUNNER conducts the diagnosis and retraining itera-
tively, we only show the total time cost. The results indicate that the
Vanilla and ROC have the shortest training time, and the Oversam-
ple and Reweighing methods have a similar training time. However,
these methods are less effective in improving fairness compared to
other methods. The Adversarial method takes more time to con-
verge, requiring more than twice the time of the Vanilla method.
For example, on the Adult dataset, the Adversarial method takes
83.4 seconds, which is significantly longer than Vanilla. Regarding
the FairNeuron method, we find that the diagnosis time greatly
exceeds that of other methods. For instance, on the Adult dataset,
the total time cost is 661.7 seconds, more than 20 times longer than
Vanilla. The diagnosis time alone takes 630.7 seconds, with the re-
sponsible unfair neuron analysis process alone taking 454.6 seconds.
In contrast, RUNNER takes only 66.5 seconds on the Adult dataset,
and its time costs across different datasets are consistently lower
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Table 1: Results on the four datasets under ADP metric.

‘ Metric Vanilla ‘ Oversample ‘ Reweighing ‘ Adversarial ‘ FairNeuron ‘ FairSmote ROC RUNNER
AP 0.781 £ 0.009 | 0.767 £ 0.011 | 0.720 £ 0.016 | 0.765 + 0.015 | 0.787 £ 0.002 | 0.781 = 0.009 | 0.646 £ 0.012 | 0.766 + 0.011
Adult ACC | 0.850 £ 0.005 | 0.825 £ 0.005 | 0.811 +0.010 | 0.823 + 0.010 | 0.857 + 0.001 | 0.852 + 0.005 | 0.845 + 0.005 | 0.838 £ 0.005

ADP | 0.170 £ 0.021 | 0.080 £ 0.013 | 0.102 + 0.023 | 0.066 + 0.011 | 0.171 + 0.000 | 0.146 + 0.021 | 0.082 + 0.010 | 0.048 + 0.012

AP 0.643 £ 0.004 | 0.634 + 0.008 | 0.637 = 0.003 | 0.640 + 0.010 | 0.649 £ 0.001 | 0.632 + 0.007 | 0.501 + 0.012

0.623 £ 0.008

COMPAS | ACC

0.655 + 0.003 | 0.651 £ 0.007 | 0.643 + 0.005 | 0.653 £ 0.010 | 0.658 + 0.002 | 0.654 + 0.005 | 0.636 £ 0.007 | 0.649 + 0.006

ADP | 0.174 £ 0.009 | 0.140 * 0.018 | 0.029 + 0.017 | 0.125 £ 0.074 | 0.190 + 0.008 | 0.166 = 0.018 | 0.049 + 0.012 | 0.006 + 0.004

AP 0.797 +£0.023 | 0.791 + 0.013 | 0.811 + 0.008 | 0.863 + 0.003 | 0.846 + 0.003 | 0.811 + 0.019 | 0.792 £ 0.015

0.840 £ 0.009

Credit ACC

0.682 £ 0.036 | 0.655 + 0.034 | 0.608 £ 0.030 | 0.687 = 0.015 | 0.711 £ 0.006 | 0.660 = 0.018 | 0.695 + 0.019 | 0.654 + 0.017

ADP | 0.134 £0.027 | 0.109 + 0.037 | 0.139 = 0.035 | 0.124 £ 0.052 | 0.156 + 0.018 | 0.161 + 0.049 | 0.150 + 0.030 | 0.056 + 0.029

AP 0.924 £ 0.005 | 0.927 £ 0.004 | 0.930 £ 0.002 | 0.918 + 0.007 | 0.927 £ 0.004 | 0.913 + 0.008 | 0.879 + 0.003

0.924 £ 0.003

LSAC ACC

0.839 + 0.007 | 0.842 £ 0.003 | 0.758 + 0.016 | 0.836 £ 0.006 | 0.855 + 0.008 | 0.823 + 0.014 | 0.847 + 0.001

0.840 £ 0.002

ADP | 0.007 +0.004 | 0.008 £ 0.006 | 0.008 + 0.005 | 0.023 £ 0.211 | 0.005 + 0.001 | 0.007 + 0.004 | 0.004 + 0.003 | 0.004 + 0.003

Table 2: Results on the four datasets under AEO metric.

‘ Metric ‘ Vanilla

Oversample ‘ Reweighing ‘ Adversarial ‘ FairNeuron ‘ FairSmote ROC

RUNNER

AP 0.779 £0.013 | 0.762 + 0.010 | 0.762 + 0.010 | 0.761 + 0.014 | 0.786 + 0.001 | 0.785 = 0.010 | 0.600 + 0.016 | 0.767 + 0.012

Adult ACC

0.850 + 0.004 | 0.819 £ 0.006 | 0.819 + 0.006 | 0.749 £ 0.159 | 0.857 + 0.001 | 0.852 + 0.003 | 0.825 + 0.007

0.813 £ 0.008

AEO | 0.096 +0.038 | 0.141 + 0.024 | 0.141 £ 0.024 | 0.102 + 0.047 | 0.138 + 0.004 | 0.104 + 0.038 | 0.145 + 0.029 | 0.082 + 0.023

AP 0.641 + 0.006 | 0.645 + 0.014 | 0.645 = 0.014 | 0.643 + 0.005 | 0.649 £ 0.001 | 0.635 + 0.004 | 0.523 + 0.012

0.637 = 0.007

COMPAS | ACC

0.653 £ 0.005 | 0.653 £ 0.007 | 0.653 £ 0.007 | 0.653 + 0.006 | 0.658 £ 0.002 | 0.654 + 0.006 | 0.636 + 0.008 | 0.651 + 0.004

AEO | 0.348 £ 0.045 | 0.156 £ 0.017 | 0.156 + 0.017 | 0.057 + 0.017 | 0.353 = 0.020 | 0.318 £ 0.039 | 0.246 + 0.040 | 0.046 + 0.015

AP 0.788 £ 0.014 | 0.784 + 0.009 | 0.784 £ 0.009 | 0.861 + 0.005 | 0.843 + 0.006 | 0.808 + 0.023 | 0.764 + 0.032

0.838 £ 0.017

Credit ACC

0.650 £ 0.019 | 0.639 +0.022 | 0.639 £ 0.022 | 0.612 = 0.013 | 0.721 £ 0.006 | 0.634 + 0.021 | 0.636 + 0.030 | 0.660 + 0.120

AEO | 0.343 £0.068 | 0.260 = 0.099 | 0.260 £ 0.099 | 0.197 + 0.037 | 0.442 £ 0.001 | 0.297 + 0.106 | 0.250 £ 0.098 | 0.179 + 0.090

AP 0.925 £ 0.004 | 0.930 + 0.001 | 0.930 £ 0.001 | 0.913 + 0.006 | 0.926 + 0.003 | 0.916 + 0.009 | 0.864 + 0.006 | 0.908 + 0.004

LSAC ACC

0.841 +£0.003 | 0.762 £ 0.013 | 0.762 + 0.013 | 0.695 + 0.024 | 0.855 + 0.008 | 0.823 + 0.025 | 0.700 + 0.024 | 0.671 £ 0.011

AEO | 0.024 £ 0.013 | 0.023 + 0.009 | 0.023 £ 0.009 | 0.024 + 0.016 | 0.037 + 0.005 | 0.048 + 0.011 | 0.029 + 0.011 | 0.018 + 0.020

Table 3: Epochs and time needed to train a model.

Adversarial FairNeuron FairSmote RUNNER
epochs | time | epochs | time_{D} | time {R} | time | epochs | time | epochs | time
Adult 15 83.4s 10 692.2s 36.7s 728.9s 5 100.9s 5 66.5s
COMPAS 15 22.7s 10 201.9s 15.5s 217.4s 5 15.5s 5 19.4s
Credit 15 21.4s 10 106.4s 10.7s 117.1s 5 10.1s 5 9.8s
LSAC 15 35.5s 10 345.1s 25.4s 370.5s 5 26.4s 5 22.9s

than those of the Adversarial methods. Although FairSmote is effi-
ciently competitive on smaller datasets like COMPAS, Credit, and
LSAC, it is less efficient on Adult since FairSmote needs to generate
more data on larger datasets which is time-consuming. RUNNER
is the most efficient among the three methods that are effective in
improving fairness, i.e., Adversarial, FairSmote, and RUNNER. On
average, our approach significantly reduces computing overhead
from 341.7s of FairNeuron to 29.65s. These experimental results
demonstrate that RUNNER is more efficient.

Answer to RQ2: RUNNER is significantly more efficient
compared with FairNeuron and only incurs a slightly
longer time cost than Vanilla and Oversample training
methods.

4.4 ROQ3: Generalization on the image domain.

When working with tabular datasets, the RUNNER approach is
not only effective but also efficient. To demonstrate the superior-
ity of our repair method over previous methods on unstructured

datasets, we measure the fairness performance and time usage us-
ing the large-scale high-resolution public image dataset CelebA.
Specifically, we use an AlexNet to classify the "attractive" attribute
and a ResNet-18 to classify the "wavy hair" attribute. We compare
our approach against four other baselines: Vanilla, Oversample,
FairNeuron, and Adversarial which have been shown to be applica-
ble to the image domain.

The experimental results are shown in Tables 4 and 5. We can see
that the Oversample method could effectively improve the fairness
metrics especially the AEO metric. For example, for the "attrac-
tive" classification model, Oversample improves AEO from 0.496
to 0.056. Moreover, the AP value also increases from 0.821 to 0.864.
However, Oversample only achieves a slight change on the ADP
metric. The AP performance of the Adversarial method is not sta-
ble although it can consistently enhance fairness compared with
the Vanilla method. For example, the AEO scores are improved
from 0.496/0.219 to 0.134/0.097, while the AP degradation is salient
under the AEO metric (from 0.821/0.724 to 0.813/0.748) for the
"attractive"/"wavy hair" classification. The reason behind the degra-
dation might be the improper hyperparameter settings, which are
extremely difficult to optimize for better performance. Our method
RUNNER consistently achieves the best fairness performance for
ADP and AEO. Especially on the "wavy hair" classification predic-
tion task, RUNNER improves the AEO score largely (0.078 versus
0.219) and also improves the AP value from 0.724 to 0.776. The AEO
score of 0.078 largely outperforms the second-best AEO score (i.e.,
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Table 4: Results of "attractive" classification.

Metric Vanilla Oversample | Adversarial | FairNeuron RUNNER
AP 0.881 + 0.024 | 0.894 £ 0.015 | 0.859 + 0.033 | 0.880 + 0.024 | 0.866 + 0.008
ACC | 0.780 + 0.037 | 0.800 £ 0.017 | 0.756 = 0.040 | 0.783 £ 0.035 | 0.766 = 0.009
ADP | 0.450 £0.019 | 0.451 £ 0.018 | 0.282 + 0.021 | 0.448 £ 0.018 | 0.215 + 0.016

Metric Vanilla Oversample | Adversarial | FairNeuron RUNNER
AP 0.821 £ 0.031 | 0.864 £ 0.003 | 0.813 £ 0.022 | 0.837 £ 0.041 | 0.867 + 0.006
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Table 6: Comparison of various hyperparameter k settings
on the Adult Dataset.

Adult 5% 10% 20% 50%
AP 0.766 £ 0.013 | 0.766 + 0.011 | 0.762 = 0.008 | 0.751 £ 0.013
ACC | 0.839 £0.006 | 0.838 +0.005 | 0.836 + 0.005 | 0.833 + 0.005

ADP | 0.053 £0.011 | 0.048 £ 0.012 | 0.042 + 0.012 | 0.023 + 0.014

ACC | 0.718 £ 0.034 | 0.769 + 0.010 | 0.711 £ 0.024 | 0.734 + 0.036 | 0.781 + 0.005
AEO | 0.496 £ 0.055 | 0.056 = 0.011 | 0.134 + 0.035 | 0.513 £ 0.036 | 0.050 + 0.013

Table 5: Results of "wavy hair" classification.

Metric Vanilla Oversample | Adversarial | FairNeuron RUNNER
AP 0.829 £ 0.011 | 0.801 +0.039 | 0.806 + 0.051 | 0.817 £ 0.015 | 0.805 + 0.050
ACC | 0.783 +0.019 | 0.780 £ 0.036 | 0.771 + 0.039 | 0.775 £ 0.026 | 0.771 + 0.049
ADP | 0.250 £ 0.036 | 0.253 + 0.064 | 0.241 £ 0.054 | 0.245 + 0.049 | 0.239 + 0.086
Metric Vanilla Oversample | Adversarial | FairNeuron RUNNER
AP 0.724 £ 0.044 | 0.774 £ 0.025 | 0.748 £ 0.041 | 0.766 + 0.071 | 0.776 + 0.013
ACC | 0.701 £ 0.025 | 0.747 £ 0.061 | 0.715 + 0.072 | 0.739 £ 0.053 | 0.733 + 0.088
AEO | 0.219 £0.070 | 0.089 + 0.067 | 0.097 £ 0.054 | 0.269 + 0.099 | 0.078 + 0.040

0.089) which is achieved by the Oversample method. Therefore, we
can conclude that our method RUNNER is more effective than other
baselines in fairness repair on the high-resolution dataset CelebA.

Answer to RQ3: The RUNNER model exhibits strong gen-
eralization capabilities when it comes to repairing un-
fairness in high-resolution unstructured image datasets.

4.5 ROQ4: Effects of Configurable
Hyperparameters.

Our RUNNER method requires to search for a single hyperparam-
eter, denoted as k in Equation 7. To assess the effectiveness of
different values of k, we conduct a comparison experiment on both
the Adult and CelebA datasets, setting k to 5%, 10%, 20%, and 50%.
Results are presented in Tables 6 and 7. We find that on the Adult
dataset, the best ADP score (0.023) is achieved when k is set to
50%, while the best AEO score (0.073) is achieved with k set to
5%. In contrast, on the CelebA dataset, the best ADP score (0.189)
is achieved with k set to 5%, and the best AEO score of 0.050 is
achieved with k set to 20%. These results suggest that the optimal
value of k may not be uniform across all scenarios. Notably, our
RUNNER method consistently achieves superior fairness perfor-
mance on the Adult dataset compared to other baseline methods,
under a broad range of hyperparameter settings. In contrast, the
FairNeuron method heavily relies on searching two configurable hy-
perparameters, while Adversarial methods involve adjusting the ad-
versary architecture, learning rate, and learning interval. Therefore,
our RUNNER method offers a simpler and more effective solution
for addressing unfairness in comparison to existing methods.

Answer to RQ4: Across multiple hyperparameter set-
tings of k, RUNNER consistently and effectively repairs
unfairness.

5% 10% 20% 50%

AP 0.762 £ 0.013 | 0.767 £ 0.012 | 0.763 £ 0.014 | 0.762 + 0.009
ACC | 0.810 +0.006 | 0.813 +£0.008 | 0.814 + 0.004 | 0.807 + 0.005
AEO | 0.073 +0.026 | 0.082 +0.023 | 0.085 = 0.026 | 0.082 + 0.027

Table 7: Comparison of various hyperparameter k settings
on the CelebA Dataset for "attractive" classification.

CelebA 5% 10% 20% 50%

AP 0.858 £ 0.006 | 0.861 + 0.007 | 0.860 + 0.004 | 0.866 + 0.008
ACC 0.751 £ 0.019 | 0.761 £ 0.019 | 0.758 £ 0.016 | 0.766 + 0.009
ADP 0.189 £ 0.033 | 0.197 £ 0.020 | 0.202 £ 0.029 | 0.215 £ 0.016

5% 10% 20% 50%

AP 0.865 + 0.007 | 0.861 £ 0.012 | 0.867 + 0.006 | 0.863 + 0.009

ACC 0.775 £ 0.012 | 0.773 £ 0.011 | 0.781 £ 0.005 | 0.774 £ 0.010

AEO 0.068 £ 0.023 | 0.053 £ 0.013 | 0.050 + 0.013 | 0.064 + 0.025

5 DISCUSSION

As we claim in the previous section, the neurons selected in the
diagnosis process should be not only "unfair" but also "responsible”
for the final classification. In the following sections, we further
introduce our qualitative analysis to empirically verify this point,
including the degree of unfairness and responsibility in the selected
neurons.

5.1 Degree of Unfairness

In this section, we aim to investigate the degree of unfairness in neu-
rons selected by Importance-based Neuron Diagnosis. Neurons that
exhibit disparate activation patterns towards different subgroups
can be considered discriminatory and unfair. To quantify the extent
of unfairness in an individual neuron m at layer [, we define its
neuron discrimination as the difference between activation patterns
observed across different subgroups. Specifically, we examine the
correlation between the unfairness importance scores Ul and the
neuron discrimination scores.

We here take the L; distance to calculate the neuron discrimina-
tion through:

8(m. L f, Po, P1) = ||Ex~p, f (x) = Ex~p, f(0)|]1, (11)

To investigate this correlation, we sorted the neurons at each
model layer based on their unfairness importance scores, Ul and
then divided them into five equal buckets. Specifically, we created
buckets for the top 20% of neurons with high unfairness importance
scores, the 20%-40% bucket, the 40%-80% bucket, and the last 20%
of neurons (i.e., 80%-100%) with low UI scores.

We then calculate the average neuron discrimination value for
each bucket of neurons and compared them among the buckets.
We conduct this analysis on both unfair model and fairer model,
and find that an unfair model consistently exhibits higher neuron
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Figure 3: Neuron discrimination on the Adult Dataset on the ADP and AEO metric.
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Figure 4: Neuron discrimination on the CelebA Dataset on the ADP and AEO metric.

discrimination values than a fairer model on both datasets and under
both fairness metrics as shown in Figures 3 and 4. For example, on
the Adult dataset, the average neuron discrimination value of the
top 20% UI neurons for the fairer model is around 1/4 of that of the
unfair model under the AEO metric on the first layer. Similarly, on
the CelebA dataset, the neuron discrimination score of the top 20%
UI neurons for the fairer model is 1/3 of that of an unfair model
under the AEO metric on the second layer. These results indicate
that fairer models have smaller neuron discrimination compared to
unfair models.

Furthermore, we find that for an unfair model on the Adult
dataset, the top 20% neurons exhibit similar neuron discrimination
compared to the subsequent neurons. For example, the neuron
discrimination of the top 20% neurons under the ADP metric was
0.076, which was close to that of the top 20%-40% neurons (i.e.,
0.070), but much higher than that of the 60%-80% neurons and
the 80%-100% neurons (i.e., 0.050 and 0.001). Different from the
Adult dataset, neuron discrimination mainly exists in the top 20%
neurons on the CelebA dataset. Figure 4 illustrates that the level of
unfairness on the last 80% of neurons is significantly lower. These
results suggest that the neurons identified by the Importance-based
Neuron Diagnosis method exhibit serious discriminatory behaviors
and are highly unfair.

5.2 Degree of Responsibility

We have identified discriminatory behavior in the responsible un-
fair neurons. We now aim to investigate the importance of these
neurons to the final model prediction.

We here employ a dropout strategy to set the activation values
of the neurons in each bucket as zero. Specifically, we drop out
the activation values of neurons in each bucket (i.e., the top 20%,
20%-40%, 40%-80%, and the last 20% neurons) which are sorted by
their unfairness importance scores Ul and evaluate the changes on
the model’s loss (Aloss) and AP (AAP) before and after dropout. The
results are shown in Figure 5. We observe that as Ul values decrease,

the corresponding Aloss and AAP get closer to 0. For example, from
the subfigures (c) and (d), we can see that the dropout to the last
80% neurons hardly affects the loss and AP values. This indicates
that neurons with higher UI values have a greater impact on the
final prediction. This analysis further highlights the importance of
addressing discriminatory neurons in achieving fairer models.

5.3 Threats to Validity

Limited datasets. Although we evaluate RUNNER using the most
common public benchmarks used in fairness repair literature, we
only use 5 datasets, and therefore, we cannot conclusively determine
the effectiveness and efficiency of the method on other datasets.
However, since RUNNER is dataset-independent, it is straightfor-
ward to extend our evaluation to include additional datasets if they
become available in the future.

Limited model structures. In our experiments, we limited the
evaluation of RUNNER to the MLP model, AlexNet, and ResNet-18.
However, it is worth noting that the key idea behind RUNNER is
generic and can be easily implemented for more complex neural
networks.

Access to model. RUNNER is a white-box algorithm that diagnoses
neurons in middle layers based on gradient calculations, which
means it requires access to the model. It is widely accepted in the
fairness repair literature that having full knowledge of the target
model is necessary for an effective repair.

6 RELATED WORK

6.1 Unfairness in Deep Learning Systems

The unfairness of a DNN is an issue of the model’s prediction
relying too heavily on certain unimportant attributes of the data,
resulting in bias. Unfairness is a significant issue for scenarios
where equity highly matters such as standardized tests [15] and
employment [49]. There are two main notations to evaluate the
fairness of deep learning, i.e., individual fairness [7, 21, 23, 36, 42, 62,
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Figure 5: Dropout results on the Adult and CelebA Dataset under the ADP and AEO metric.

64], group fairness [7, 18, 22, 26, 67]. More specifically, individual and could repair all the parameters after all iterations while Care
fairness holds the view that approximate inputs should yield similar could only repair a part of neurons and the rest remains unchanged.
predictions, and thus the definition of input similarity is a key Moreover, RUNNER repairs the neurons by the Neuron Stabilizing
issue worthy of further study. Individual discrimination is defined Strategy, which provides loss guidance to neuron repair. However,
by whether individuals with similar profiles (i.e., only different in Care relies on the PSO algorithm to search for the best parameters.
protected attributes) in the dataset are treated equally by the learned In other words, RUNNER could be regarded as providing a definite
model. Group fairness is derived by calculating and comparing the searching orientation (i.e., gradients generated by the loss item)
predictions for each group, which is more widely adopted in fairness for parameters to be repaired which could reduce the searching
research [18, 22, 26]. space and time cost, avoiding the risk of local optimum. Since Care
Fairness testing is an essential area of research, and its methods doesn’t claim to be capable of enhancing group fairness, we here
are primarily based on generation techniques. For example, ADF do not include Care as a baseline for group fairness repair. Due to
utilizes global and local search methods to systematically explore the space limitation, we omit to discuss other related works.

the input space while leveraging gradient guidance [68]. NeuronFair

[70] analyzes neurons’ sensitivity to individual discrimination and 7 CONCLUSION AND FUTURE WORK
generates tes.tmg cases a.ccord1.ng to the behgvprs of .the ser%smve This paper presents Responsible UNfair NEuron Repair (RUNNER),
neurons. A line of work is dedicated to alleviating this unfairness . . .

f DNN. For example, [60] systematically compares mitigation a novel approach to enhance fairness in DNN models. Different
N ) ’ from existing methods that adopt adversarial techniques or multi-

techniques including oversample [8], adversarial training [3] and step diagnosis processes, RUNNER improves them in three key

domain discriminative training [50], and proposes a simple but . . . .
v g [50], prop pie bu aspects: efficiency, effectiveness, and generalization. Specifically,

effective mthod. Moreover, [5, 52] propose to disentangle unbiased RUNNER utilizes Importance-based Neuron Diagnosis to efficiently
representations to ensure the fairness of DNNs. On the contrary, ] . . . . . .
identify responsible unfair neurons in one step using a novel im-

17] directly repairs the classifier head regardless of whether middle . e . .
[17] yrep 1L & . portance criterion, and Neuron Stabilizing Retraining to effectively
representations are still biased. The methods proposed in [14, 39, 40] . .

. . . ; . . fix these neurons by adding a loss term that directly measures the
aim to enhance fairness through in-processing techniques. While R . . . .

activation distance of responsible unfair neurons from different

th h ffective, th itate th tati i . . .
ese approachies are eiective, they necessitate the computation subgroups. Additionally, we investigate the effectiveness of RUN-
of second-order derivatives, a process that can be computationally .
) . . . . . NER on both structured tabular data and unstructured image data.
intensive and time-consuming. [24] diagnoses the conflict paths . .
) . . . . The experimental results across a variety of datasets demonstrate
and selects biased samples for retraining to repair unfairness, while . . . .
) o . that RUNNER can significantly improve model fairness in the afore-
the diagnosis is time-consuming. .
mentioned aspects.
In future work, we will explore different distance measures other
6.2 Neuron Diagnosis in DNNs than L distance to further improve the diagnosis process. Further-
more, we can apply our approach to repair other defects of DNN

To mitigate vulnerabilities in DNNs, a common technique is to first . .
models to make them more robust in practice.

conduct a neuron diagnosis. In addition to the DNN slicing method,
the development of interpretable methods enables DNNs to present
their behaviors in understandable ways for humans [4, 41, 54], ACKNOWLEDGMENTS
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understand DNNs behaviors. Recently, Xie et al. [63] bases the di- tion, Singapore under its Al Singapore Programme (AISG Award No:
agnosis on the neuron relevance calculation and reveals that the AISG2-PhD-2021-08-022T). It is also supported by A*STAR Centre
responsible neurons of adversarial samples are different from that for Frontier Al Research, the National Research Foundation Singa-
of normal samples, and it leads to wrong classification decisions. pore and DSO National Laboratories under the AI Singapore Pro-
Care [55] also follows a diagnosis- repair paradigm to repair indi- gramme (AISG Award No: AISG2-RP-2020-019), National Satellite
vidual discrimination. However, it should be noted that individual of Excellence in Trustworthy Software System No. NRF2018NCR-
fairness and group fairness are different problems and may require NSOE003-0001, NRF Investigatorship No. NRF-NRFI06-2020-0001,
dedicated strategies separately. Compared with Care, RUNNER iter- and the National Natural Science Foundation of China 62206009.
atively locates the responsible unfair neurons and repairs identified We gratefully acknowledge the support of NVIDIA AI Tech Center

neurons. RUNNER repairs a subset of neurons in each iteration (NVAITC).



ICSE °24, April 14-20, 2024, Lisbon, Portugal

REFERENCES

(1]

[10

Tameem Adel, Isabel Valera, Zoubin Ghahramani, and Adrian Weller. 2019. One-
Network Adversarial Fairness. In Proceedings of the Thirty-Third AAAI Conference
on Artificial Intelligence and Thirty-First Innovative Applications of Artificial In-
telligence Conference and Ninth AAAI Symposium on Educational Advances in
Artificial Intelligence (Honolulu, Hawaii, USA) (AAAI'19/IAAI'19/EAAT’19). AAAT
Press, Article 298, 9 pages. https://doi.org/10.1609/aaai.v33i01.33012412

Md Zahangir Alom, Tarek M Taha, Christopher Yakopcic, Stefan Westberg, Pa-
heding Sidike, Mst Shamima Nasrin, Brian C Van Esesn, Abdul A S Awwal, and
Vijayan K Asari. 2018. The history began from alexnet: A comprehensive survey
on deep learning approaches. arXiv preprint arXiv:1803.01164 (2018).

Mohsan Alvi, Andrew Zisserman, and Christoffer Nellaker. 2018. Turning a
blind eye: Explicit removal of biases and variation from deep neural network
embeddings. In Proceedings of the European Conference on Computer Vision (ECCV)
Workshops. 0-0.

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen,
Klaus-Robert Miiller, and Wojciech Samek. 2015. On pixel-wise explanations for
non-linear classifier decisions by layer-wise relevance propagation. PloS one 10,
7 (2015), 0130140.

Hyojin Bahng, Sanghyuk Chun, Sangdoo Yun, Jaegul Choo, and Seong Joon
Oh. 2020. Learning de-biased representations with biased representations. In
International Conference on Machine Learning. PMLR, 528-539.

Hubert Baniecki, Wojciech Kretowicz, Piotr Piatyszek, Jakub Wisniewski, and
Przemyslaw Biecek. 2021. dalex: Responsible Machine Learning with Interactive
Explainability and Fairness in Python. Journal of Machine Learning Research 22,
214 (2021), 1-7. http://jmlr.org/papers/v22/20-1473.html

Alex Beutel, Jilin Chen, Tulsee Doshi, Hai Qian, Allison Woodruff, Christine
Luu, Pierre Kreitmann, Jonathan Bischof, and Ed H Chi. 2019. Putting fairness
principles into practice: Challenges, metrics, and improvements. In Proceedings
of the 2019 AAAI/ACM Conference on Al Ethics, and Society. 453-459.

Steffen Bickel, Michael Briickner, and Tobias Scheffer. 2009. Discriminative
learning under covariate shift. Journal of Machine Learning Research 10, 9 (2009).
Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Srndié,
Pavel Laskov, Giorgio Giacinto, and Fabio Roli. 2013. Evasion attacks against
machine learning at test time. In Machine Learning and Knowledge Discovery
in Databases: European Conference, ECML PKDD 2013, Prague, Czech Republic,
September 23-27, 2013, Proceedings, Part III 13. Springer, 387-402.

Christopher M. Bishop. 1996. Neural Networks for Pattern Recognition. Oxford
University Press, Inc., USA.

[11] Joymallya Chakraborty, Suvodeep Majumder, and Tim Menzies. 2021. Bias in

[12]

[13]

[14]

[15]

[16]

[17]

(18]
[19]
[20]

[21

[22]

[23]

machine learning software: Why? how? what to do?. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 429-440.

Tong Che, Yanran Li, Athul Paul Jacob, Yoshua Bengio, and Wenjie Li. 2016. Mode
regularized generative adversarial networks. arXiv preprint arXiv:1612.02136
(2016).

Alexandra Chouldechova. 2017. Fair prediction with disparate impact: A study
of bias in recidivism prediction instruments. Big data 5, 2 (2017), 153-163.
Ching-Yao Chuang and Youssef Mroueh. 2021. Fair Mixup: Fairness via In-
terpolation. In International Conference on Learning Representations. https:
//openreview.net/forum?id=DNI5s5BXeBn

T Anne Cleary. 1966. Test bias: Validity of the Scholastic Aptitude Test for Negro
and White students in integrated colleges. ETS Research Bulletin Series 1966, 2
(1966), i-23

Pieter Delobelle, Paul Temple, Gilles Perrouin, Benoit Frénay, Patrick Heymans,
and Bettina Berendt. 2021. Ethical adversaries: Towards mitigating unfairness
with adversarial machine learning. ACM SIGKDD Explorations Newsletter 23, 1
(2021), 32-41.

Mengnan Du, Subhabrata Mukherjee, Guanchu Wang, Ruixiang Tang, Ahmed
Awadallah, and Xia Hu. 2021. Fairness via representation neutralization. Advances
in Neural Information Processing Systems 34 (2021), 12091-12103.

Mengnan Du, Fan Yang, Na Zou, and Xia Hu. 2020. Fairness in deep learning: A
computational perspective. IEEE Intelligent Systems 36, 4 (2020), 25-34.

Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http:
//archive.ics.uci.edu/ml

Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http:
//archive.ics.uci.edu/ml

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard
Zemel. 2012. Fairness through awareness. In Proceedings of the 3rd innovations in
theoretical computer science conference. 214-226.

Michael Feldman, Sorelle A Friedler, John Moeller, Carlos Scheidegger, and Suresh
Venkatasubramanian. 2015. Certifying and removing disparate impact. In pro-
ceedings of the 21th ACM SIGKDD international conference on knowledge discovery
and data mining. 259-268.

Pratik Gajane and Mykola Pechenizkiy. 2017. On formalizing fairness in predic-
tion with machine learning. arXiv preprint arXiv:1710.03184 (2017).

[24

[25

[26

[27

™
&,

[29

[30

[31

'w
&,

[33

(34]

(35]

[36

w®
=

[38

[39

[40

[41

[42

[43

[44

[45

[46

[47

Trovato and Tobin, et al.

Xuangi Gao, Juan Zhai, Shiging Ma, Chao Shen, Yufei Chen, and Qian Wang. 2022.
FairNeuron: improving deep neural network fairness with adversary games on
selective neurons. In Proceedings of the 44th International Conference on Software
Engineering. 921-933.

Pratyush Garg, John Villasenor, and Virginia Foggo. 2020. Fairness metrics: A
comparative analysis. In 2020 IEEE International Conference on Big Data (Big
Data). IEEE, 3662-3666.

Moritz Hardt, Eric Price, and Nati Srebro. 2016. Equality of opportunity in
supervised learning. Advances in neural information processing systems 29 (2016).
Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 770-778. https://doi.org/10.1109/CVPR.2016.90
Ming Hu, Jun Xia, Min Zhang, Xiaohong Chen, Frédéric Mallet, and Mingsong
Chen. 2023. Automated Synthesis of Safe Timing Behaviors for Requirements
Models using CCSL. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (2023), 1-1. https://doi.org/10.1109/TCAD.2023.3285412
Ming Hu, Zeke Xia, Zhihao Yue, Jun Xia, Yihao Huang, Yang Liu, and Mingsong
Chen. 2022. GitFL: Adaptive Asynchronous Federated Learning using Version
Control. arXiv:2211.12049 [cs.LG]

Nathalie Japkowicz and Shaju Stephen. 2002. The class imbalance problem: A
systematic study. Intelligent data analysis 6, 5 (2002), 429-449.

Faisal Kamiran and Toon Calders. 2012. Data preprocessing techniques for
classification without discrimination. Knowledge and information systems 33, 1
(2012), 1-33.

Faisal Kamiran, Asim Karim, and Xiangliang Zhang. 2012. Decision theory for
discrimination-aware classification. In 2012 IEEE 12th international conference on
data mining. IEEE, 924-929.

Jon M. Kleinberg, Sendhil Mullainathan, and Manish Raghavan. 2016. Inherent
Trade-Offs in the Fair Determination of Risk Scores. ArXiv abs/1609.05807 (2016).
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Clas-
sification with Deep Convolutional Neural Networks. In Advances in Neural
Information Processing Systems, F. Pereira, C.J. Burges, L. Bottou, and K.Q. Wein-
berger (Eds.), Vol. 25. Curran Associates, Inc. https://proceedings.neurips.cc/
paper/2012/file/c399862d3b9d6b76c8436€924a68c45b-Paper.pdf

Preethi Lahoti, Krishna P Gummadi, and Gerhard Weikum. 2019. Operational-
izing individual fairness with pairwise fair representations. arXiv preprint
arXiv:1907.01439 (2019).

Anran Li, Lan Zhang, Juntao Tan, Yaxuan Qin, Junhao Wang, and Xiang-Yang
Li. 2021. Sample-level data selection for federated learning. In IEEE INFOCOM
2021-IEEE Conference on Computer Communications. IEEE, 1-10.

Anran Li, Lan Zhang, Junhao Wang, Juntao Tan, Feng Han, Yaxuan Qin, Niko-
laos M Freris, and Xiang-Yang Li. 2021. Efficient federated-learning model de-
bugging. In 2021 IEEE 37th International Conference on Data Engineering (ICDE).
IEEE, 372-383.

Tianlin Li, Qing Guo, Aishan Liu, Mengnan Du, Zhiming Li, and Yang Liu. 2023.
FAIRER: Fairness as Decision Rationale Alignment. arXiv:2306.15299 [cs.LG]
Tianlin Li, Zhiming Li, Anran Li, Mengnan Du, Aishan Liu, Qing Guo, Guozhu
Meng, and Yang Liu. 2023. Fairness via Group Contribution Matching. In Proceed-
ings of the Thirty-Second International Joint Conference on Artificial Intelligence,
IJCAI-23, Edith Elkind (Ed.). International Joint Conferences on Artificial In-
telligence Organization, 436-445. https://doi.org/10.24963/ijcai.2023/49 Main
Track.

Tianlin Li, Aishan Liu, Xianglong Liu, Yitao Xu, Chongzhi Zhang, and Xiaofei
Xie. 2021. Understanding adversarial robustness via critical attacking route.
Information Sciences 547 (2021), 568-578. https://doi.org/10.1016/].ins.2020.08.043
Tianlin Li, Xiaofei Xie, Jian Wang, Qing Guo, Aishan Liu, Lei Ma, and Yang
Liu. 2023. Faire: Repairing Fairness of Neural Networks via Neuron Condition
Synthesis. ACM Trans. Softw. Eng. Methodol. (aug 2023). https://doi.org/10.1145/
3617168 Just Accepted.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. 2015. Deep Learning Face
Attributes in the Wild. In Proceedings of International Conference on Computer
Vision (ICCV).

Gilles Louppe, Michael Kagan, and Kyle Cranmer. 2017. Learning to pivot with
adversarial networks. Advances in neural information processing systems 30
(2017).

David Madras, Elliot Creager, Toniann Pitassi, and Richard Zemel. 2018. Learning
adversarially fair and transferable representations. In International Conference on
Machine Learning. PMLR, 3384-3393.

Tom Van Mele and many others. 2017-2021. COMPAS: A framework for compu-
tational research in architecture and structures. https://doi.org/10.5281/zenodo.
2594510 http://compas.dev.

Daniel Moyer, Shuyang Gao, Rob Brekelmans, Aram Galstyan, and Greg Ver Steeg.
2018. Invariant representations without adversarial training. Advances in Neural
Information Processing Systems 31 (2018).


https://doi.org/10.1609/aaai.v33i01.33012412
http://jmlr.org/papers/v22/20-1473.html
https://openreview.net/forum?id=DNl5s5BXeBn
https://openreview.net/forum?id=DNl5s5BXeBn
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/TCAD.2023.3285412
https://arxiv.org/abs/2211.12049
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://arxiv.org/abs/2306.15299
https://doi.org/10.24963/ijcai.2023/49
https://doi.org/10.1016/j.ins.2020.08.043
https://doi.org/10.1145/3617168
https://doi.org/10.1145/3617168
https://doi.org/10.5281/zenodo.2594510
https://doi.org/10.5281/zenodo.2594510

RUNNER: Responsible UNfair NEuron Repair for Enhancing
Deep Neural Network Fairness

[48]

[49

[50]

[51

[52]

[53]

[54

[55]

[56

[57]

[58

[59

[60]

[61]

[62]

(63

[64

[65

[66]

[67

[68

[69]

[70

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library. In Advances in Neural Information Processing Systems 32. Curran
Associates, Inc., 8024-8035. http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf

Manish Raghavan, Solon Barocas, Jon Kleinberg, and Karen Levy. 2020. Mitigating
bias in algorithmic hiring: Evaluating claims and practices. In Proceedings of the
2020 conference on fairness, accountability, and transparency. 469-481.

Marco Saerens, Patrice Latinne, and Christine Decaestecker. 2002. Adjusting the
outputs of a classifier to new a priori probabilities: a simple procedure. Neural
computation 14, 1 (2002), 21-41.

Richard H Sander. 2004. A systemic analysis of affirmative action in American
law schools. Stan. L. Rev. 57 (2004), 367.

Mhd Hasan Sarhan, Nassir Navab, Abouzar Eslami, and Shadi Albarqouni. 2020.
Fairness by learning orthogonal disentangled representations. In Computer Vision—
ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceed-
ings, Part XXIX 16. Springer, 746-761.

Reza Shokri and Vitaly Shmatikov. 2015. Privacy-preserving deep learning. In
Proceedings of the 22nd ACM SIGSAC conference on computer and communications
security. 1310-1321.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. 2017. Learning im-
portant features through propagating activation differences. In International
conference on machine learning. PMLR, 3145-3153.

Bing Sun, Jun Sun, Hong Long Pham, and Jie Shi. 2022. Causality-based Neural
Network Repair. arXiv:2204.09274 [cs.SE]

Naftali Tishby and Noga Zaslavsky. 2015. Deep learning and the information
bottleneck principle. In 2015 ieee information theory workshop (itw). IEEE, 1-5.
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).
DeLiang Wang and Jitong Chen. 2018. Supervised speech separation based
on deep learning: An overview. IEEE/ACM Transactions on Audio, Speech, and
Language Processing 26, 10 (2018), 1702-1726.

Guanchu Wang, Mengnan Du, Ninghao Liu, Na Zou, and Xia Hu. 2022. Mitigating
Algorithmic Bias with Limited Annotations. arXiv preprint arXiv:2207.10018
(2022).

Zeyu Wang, Klint Qinami, Ioannis Christos Karakozis, Kyle Genova, Prem Nair,
Kenji Hata, and Olga Russakovsky. 2020. Towards fairness in visual recognition:
Effective strategies for bias mitigation. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. 8919-8928.

Mark Weiser. 1984. Program Slicing. IEEE Transactions on Software Engineering
SE-10, 4 (1984), 352-357. https://doi.org/10.1109/TSE.1984.5010248

Yisong Xiao, Aishan Liu, Tianlin Li, and Xianglong Liu. 2023. Latent Imitator:
Generating Natural Individual Discriminatory Instances for Black-Box Fairness
Testing. arXiv:2305.11602 [cs.SE]

Xiaofei Xie, Tianlin Li, Jian Wang, L. Ma, Qing Guo, Felix Juefei-Xu, and Yang Liu.
2022. NPC: Neuron Path Coverage via Characterizing Decision Logic of Deep
Neural Networks. ACM Transactions on Software Engineering and Methodology
(TOSEM) 31 (2022), 1 - 27.

Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. 2013.
Learning fair representations. In International conference on machine learning.
PMLR, 325-333.

Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell. 2018. Mitigating un-
wanted biases with adversarial learning. In Proceedings of the 2018 AAAI/ACM
Conference on Al Ethics, and Society. 335-340.

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong
Liu. 2019. A novel neural source code representation based on abstract syntax
tree. In Proceedings of the 41st International Conference on Software Engineering.
IEEE Press, 783-794.

Lu Zhang, Yongkai Wu, and Xintao Wu. 2017. Achieving non-discrimination in
data release. In Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 1335-1344.

Peixin Zhang, Jingyi Wang, Jun Sun, Guoliang Dong, Xinyu Wang, Xingen Wang,
Jin Song Dong, and Ting Dai. 2020. White-box fairness testing through adversar-
ial sampling. In Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering. 949-960.

Ziqi Zhang, Yuanchun Li, Yao Guo, Xiangqun Chen, and Yunxin Liu. 2020.
Dynamic Slicing for Deep Neural Networks. In Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (Virtual Event, USA) (ESEC/FSE
2020). Association for Computing Machinery, New York, NY, USA, 838-850.
https://doi.org/10.1145/3368089.3409676

Haibin Zheng, Zhiqing Chen, Tianyu Du, Xuhong Zhang, Yao Cheng, Shouling
Ti, Jingyi Wang, Yue Yu, and Jinyin Chen. 2022. NeuronFair: Interpretable White-
Box Fairness Testing through Biased Neuron Identification. In 2022 IEEE/ACM

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

44th International Conference on Software Engineering (ICSE). 1519-1531. https:
//doi.org/10.1145/3510003.3510123


http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/2204.09274
https://doi.org/10.1109/TSE.1984.5010248
https://arxiv.org/abs/2305.11602
https://doi.org/10.1145/3368089.3409676
https://doi.org/10.1145/3510003.3510123
https://doi.org/10.1145/3510003.3510123

	Abstract
	1 Introduction
	2 Background
	2.1 Deep Neural Networks
	2.2 Group Fairness Evaluation Metrics
	2.3 DNNs Slicing and Repair

	3 Methodology
	3.1 Overview
	3.2 Importance-based Neuron Diagnosis
	3.3 Neuron Stabilizing Retraining
	3.4 Iterative Repair

	4 Evaluation
	4.1 Experimental Setup
	4.2 RQ1: Effectiveness of our method.
	4.3 RQ2: Efficiency of our method.
	4.4 RQ3: Generalization on the image domain.
	4.5 RQ4: Effects of Configurable Hyperparameters.

	5 Discussion
	5.1 Degree of Unfairness
	5.2 Degree of Responsibility
	5.3 Threats to Validity

	6 Related Work
	6.1 Unfairness in Deep Learning Systems
	6.2 Neuron Diagnosis in DNNs

	7 Conclusion and Future Work
	References

