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ABSTRACT
Automated bug detection is essential for high-quality software de-
velopment and has attracted much attention over the years. Among
the various bugs, previous studies show that the condition expres-
sions are quite error-prone and the condition-related bugs are com-
monly found in practice. Traditional approaches to automated bug
detection are usually limited to compilable code and require tedious
manual effort. Recent deep learning-based work tends to learn gen-
eral syntactic features based on Abstract Syntax Tree (AST) or apply
the existing Graph Neural Networks over program graphs. How-
ever, AST-based neural models may miss important control flow
information of source code, and existing Graph Neural Networks for
bug detection tend to learn local neighbourhood structure informa-
tion. Generally, the condition-related bugs are highly influenced by
control flow knowledge, therefore we propose a novel CFG-based
Graph Neural Network (CFGNN) to automatically detect condition-
related bugs, which includes a graph-structured LSTM unit to effi-
ciently learn the control flow knowledge and long-distance context
information. We also adopt the API-usage attention mechanism to
leverage the API knowledge. To evaluate the proposed approach,
we collect real-world bugs in popular GitHub repositories and build
a large-scale condition-related bug dataset. The experimental re-
sults show that our proposed approach significantly outperforms
the state-of-the-art methods for detecting condition-related bugs.
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1 INTRODUCTION
Bug detection plays a critical role in software development and
maintenance [16, 19, 21]. Many automated techniques have been
proposed to help developers detect various types of bugs in source
code [8, 11, 12, 27, 28, 32, 37]. Conditional expressions are shown
to be one of the most error-prone code elements and may contain
condition-related bugs [34, 50]. A manual study on 369 real bugs
from five open-source projects shows that 45% of these bugs oc-
cur in if conditional statements [10]. For example in Figure 1(a),
the conditional expression “theads.isEmpty()” in line 3 is buggy as
it leads to the non-stop deadlocked threads and wrong monitor-
ing of thread status. Previous research on condition-related bugs
mainly focuses on how to fix them with automatic program repair
techniques [49, 50]. Due to the popularity and possible severe con-
sequences of condition-related bugs, it is also important to design
an effective detector for them.

Detecting condition-related bugs is challenging. Manually de-
signing test cases for high multiple condition coverage is time
consuming and error prone. Existing tool support for automatic
test case generation is also limited. Traditional static analysis based
approaches such as FindBugs [20] heavily depend on manual ef-
fort to define common bug patterns or rules [20, 24, 35, 48]. Some
approaches use data mining or NLP techniques to automatically
extract features of different bugs [8, 28, 31, 42, 43]. However, these
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approaches learn rules based on token occurrences and can only
capture shallow semantics. Therefore, it is necessary to characterize
the condition-related bugs and explore how to automatically detect
them more effectively.

Recently, deep learning (DL) based approaches have shown
promising results. These approaches apply end-to-end neural net-
works on the Abstract Syntax Tree (AST), Program Dependence
Graph (PDG) or their hybrid graphs (AST as the backbone with
edges introduced by control flow, data flow, define-use dependen-
cies, etc.), and detect bugs by incorporating syntactic or depen-
dency information [6, 9, 27, 37, 44, 51, 60]. Although effective, the
DL-based bug detection models have two main limitations for the
condition-related bugs. First, AST-based neural models [27, 37]
may miss important control flow information of source code and
have a poor performance on detecting condition-related bugs, since
the conditional expressions can directly influence the execution
of control flow statements. Second, the existing PDG and hybrid
graph-based neural models [6, 9, 44, 51, 60] usually adopt general
Graph Neural Networks (GNNs) [25] for program representation
and may fail to capture the long-distance dependency information,
because such GNNs only learn and propagate local neighbourhood
structure information within a limited iteration number [13, 52].

In this work, we propose a novel CFG-based Graph Neural Net-
work (CFGNN) model, which leverages control flow paths of CFGs
and API knowledge to automatically detect the condition-related
bugs. Here the control flow path refers to a finite sequence of non-
repeating edges from the BEGIN node to the EXIT node in a CFG (as
depicted in Figure 1(c)), each of which covers at least one new edge.
As conditional statements can influence the nodes and control flow
structures of CFGs, our model captures the node and the control
flow knowledge of CFGs as the context information through graph
embedding. Different from existing GNNs that learn structural in-
formation with random node order and local neighbourhood propa-
gation within a fixed iteration number, we train our model along all
possible control flow paths through graph-structured LSTM units.
Note that since these control flow paths usually contain many com-
mon nodes (such as node 1, 2, and 3 in Figure1(c)), we neither parse
CFG into parallel paths nor train multiple LSTM models over all
paths separately, but share the model parameters of these nodes
by one single LSTM unit when traversing the CFG. In this way,
the control flow structure and the long-distance dependency in-
formation can be efficiently captured. Moreover, our work is also
motivated by the fact that conditional expressions often contain
API calls, and the incorrect API usages in the control flow paths
can make buggy conditions more noticeable. For example, the API
calls “threads.isEmpty()” of node 3 and “Result.healthy()” of node 9
are obviously wrong, since we should not report the healthy status
if deadlocked threads exist (that is, threads are not empty). There-
fore, we incorporate API usage information through the attention
mechanism [7] to further improve the performance. Based on the
embeddings of our CFGNN model, we check whether there exists a
condition-related bug or not.

More specifically, as shown in Figure 1, given a Java method and
the buggy conditional expression (Figure 1(a) line 3), we first parse
it into a CFG (Figure 1(b)) and add symbols < 𝑠 > and < /𝑠 > to
indicate the position of the conditional expression (node 3, marked

public Result check() throws Exception {
final Set<String> threads = VirtualMachineMetrics.deadlockedThreads();

- if (threads.isEmpty()) {
+ if ( ! threads.isEmpty()) {

final StringBuilder builder = 
new StringBuilder("Deadlocked threads detected:\n");

for (String thread : threads) {
builder.append(thread).append('\n‘);

}
return Result.unhealthy(builder.toString());

}
return Result.healthy();

}

1
2
3

4
5
6
7
8
9

10
11
12

(a) A buggy conditional expression (line 3)

BEGIN

final Set<String> threads = VirtualMachineMetrics.deadlockedThreads()

<s> threads.isEmpty() </s>

final StringBuilder builder =
new StringBuilder("Deadlocked threads detected:\n")

return Result.healthy()String thread

threads

builder.append(thread).append('\n') return 
Result.unhealthy(builder.toString())

EXIT

1

2

3

4
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(b) The CFG of the Java method

1 2 4 53 6 8 10

1 2 4 53 6 7 6 8 10

2 931 10

(c) Control flow Paths in the CFG

Figure 1: An example of condition-related bug, where 1, 2, ...,
10 are the indexes of CFG nodes.

by the red line). Then we encode the statements as node embed-
dings using Bidirectional Long Short-Term Memory (BiLSTM) [18]
to learn the sequential information of tokens. On top of the node
embeddings, we capture the structural information along the con-
trol flow paths of CFGs with our single graph-structured LSTM
unit, which updates LSTM hidden states based on the forward and
backward edge directions of CFGs. In addition, we design an API-
usage attention module by combining the attention module with
API annotations of nodes (i.e. statements).

To evaluate the proposed approach, we construct our dataset
based on the Java methods collected from high-quality Github
projects. The dataset contains 573,332 buggy and non-buggy con-
ditional expressions. We then conduct extensive experiments and
the results demonstrate the effectiveness of our CFGNN model. We
achieve an F1-score of 46.2% for detecting the condition-related
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bugs, which significantly outperforms the existing state-of-the-
art models such as the AST-based, hybrid graph-based, and other
CFG-based deep learning models [6, 27, 44].

In summary, this paper makes the following contributions:
• We propose a novel neural model, CFG-based Graph Neural
Network (CFGNN), which can capture the global control
flow information and leverage the API knowledge in CFGs;
• We provide a large-scale dataset and apply the proposed
CFGNN to detect the condition-related bugs;
• We conduct extensive experiments to evaluate our approach,
and the results show that the proposed approach is effective
and outperforms all baselines.

The remainder of this paper is organized as follows. Section 2
presents the problem definition. Section 3 describes the details of
our approach. Section 4 describes our dataset, evaluation proce-
dure, and evaluation results. We also discuss the practicality and
limitations in this section. We describe threats to the validity of
this work and related work in Section 5 and Section 6, respectively.
Finally, we conclude our paper in Section 7.

2 PROBLEM DEFINITION
In this section, we formulate the problem of condition-related bug
detection and discuss how to choose the context representation of
source code for this task.

2.1 Condition-Related Bug
Conditional expressions are widely-used in the headers of con-
ditional statements such as if, while and for statements, which
determine whether the following statements in the bodies will be
executed or not. If conditional expressions are incorrectly written,
the functionality of source code will significantly change. Thus it
is important to detect such condition-related bugs. We define the
condition-related bugs as one type of errors that relate to at least
one buggy condition in the source code.

Generally, in order to fix a condition-related bug, the correspond-
ing condition expression and other related code lines should be
modified, deleted, or added. All these source code lines and the con-
dition expression may be in one same method, multiple methods,
or even multiple files. However, the inter-procedural condition-
related bugs are involved with more contextual information and
too complex to be effectively detected than the intra-procedural
ones. Therefore, in this work we focus on the condition-related bug
detection where the condition expression and all its related code
are within the same method.

As Figure 1(a) illustrates, suppose there is a suspicious condi-
tional expression (i.e. “theads.isEmpty()”) in line 3 within the context
of a Java method, our goal is to detect whether it is buggy. More
formally, let𝑀 = {𝑡1, ..., 𝑡𝐿} denotes the method, where 𝑡𝑖 , 𝑖 ∈ [1, 𝐿]
is one token in it and 𝐿 is the total length. Given the position (𝑏, 𝑒)
of an conditional expression 𝐶 = {𝑡𝑏 , ..., 𝑡𝑒 }, 𝑏, 𝑒 ∈ [1, 𝐿] from 𝑀 ,
the target is to give a result 𝑌 ∈ {0, 1} based on the context of 𝐶
and 𝑀 (e.g., the conditional probability 𝑃𝑏𝑢𝑔𝑔𝑦 (𝐶 |𝑀) ∈ [0, 1] for
probabilistic approaches), where 𝑌 = 1 means there is such a bug,
otherwise 𝑌 = 0. Since different positions of 𝐶 can yield different
values of 𝑌 , we add symbols < 𝑠 > and < /𝑠 > to the start and end
of the conditional expression to mark its position. Note that the

conditional expression 𝐶 may consist of multiple sub-conditions
as defined in program language specification [14]. Furthermore, if
there are multiple conditional statements in one same method, we
can detect them one by one for multiple times.

In this way, we can propose automated approaches to help de-
velopers find buggy conditions, which further provides clues for
the logic errors in the code, especially at the development stage.

2.2 Design Rationale
In order to detect the condition-related bugs with specified condi-
tion expressions and their contextual methods, we should choose
a good context representation of source code as the raw input of
our approach. In this section, we discuss the rationale of choosing
CFG as the code representation and the rationale of proposing a
new GNN model.

Compared with the original token sequences of source code,AST
is a kind of tree aimed at representing the abstract syntactic struc-
ture of the source code [56]. Recentlymany deep learning-based bug
detection approaches utilize the syntactical information of ASTs to
learn the semantics of buggy methods [27, 37]. Although it has been
shown effective in detecting general or other different types of bugs,
AST may lose more important features of condition-related bugs
since neither the local nor global control flow is included, whereas
such information is a key characteristic for the accuracy of bug de-
tection [45, 46]. Our intuition for the problem is that the conditional
statements highly dominate the execution of other statements, and
thus it is more useful to consider the control flow information.

The control flow and data flow dependencies of source code
are widely represented by PDGs. Precise construction of PDGs
usually rely on the compiled code and limits the application of
many scenarios involving incomplete source code [6, 27, 40]. If
needed, the simplified and approximate version of PDGs can be
obtained by ignoring the unknown code elements such as variable,
method invocation, and so on [57]. In addition, the hybrid graphs
consisting of ASTs and edge dependencies such as control flow, data
flow and define-use, are also used to represent more code semantics
[6, 9, 44, 51, 60]. However, most of these PDG and hybrid graph-
based methods do not highlight the importance of control flow
information. For example, code property graphs [51, 60] take AST
as the backbone and treat the control flow dependencies as only
one kind of edges, which may work well for other bug types but
not for condition-related bugs. Furthermore, related work such as
[60] adopts the Gated Graph Neural Network (GGNN) [25], which
may not well capture the long-distance dependency information,
since GGNN encodes all the local nodes in one iteration and the
global dependence is limited by the iteration number [13, 52].

As described above, the condition-related bugs are highly influ-
enced by the control flow information, which can be captured by
a CFG. Also, CFGs can be very easily extracted from source code
even when the code fragments are incomplete (i.e. single methods).
Thus we prefer CFGs as the raw input of our approach. To avoid
the weakness in long-distance dependency of existing GGNNs on
PDG and hybrid graphs, we design a novel Graph Neural Network
for CFGs, aiming to better model the control flow paths of CFGs.
We also incorporate API knowledge to augment the capability of
extracting API-related features from the contexts.
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3 APPROACH
3.1 Overview
In this section, we introduce our approach to condition-related bug
detection. Our model is based on the neural network that can auto-
matically detect the buggy condition expressions at the statement
level. As described previously, to detect the potential condition-
related bugs of amethod, ourmodel requires one specified condition
expression and its context code in terms of the method. A wider ap-
plication scenario is that we can check all the condition expressions
in a given method one by one if multiple conditional expressions
exist in the method.

Figure 2 shows the overview of our approach. We design an
end-to-end neural architecture named CFG-based Graph Neural
Network (CFGNN), including preprocessing, node embedding, con-
trol flow encoding and API-usage attention mechanism. In the
preprocessing phase, we parse the given method into CFG and tok-
enize the statements of the nodes by existing tools (the details of
these tools will be described in Section 4). We mark the position of
one specified condition expression by adding some special symbols.
For instance, we add the tokens < 𝑠 > and < /𝑠 > to indicate the
condition node under inspection. Then the preprocessed CFG is
taken as input by CFGNN.

In order to facilitate the description, we define the notations as
follows. Let 𝐺 = (𝑉 , 𝐸) denotes the CFG of the given method,
where 𝑉 = {𝑛1, ..., 𝑛𝐾 } is the set of nodes 𝑛𝑖 , 𝑖 ∈ [1, 𝐾], 𝐸 =

{𝑓1, ...𝑓𝑇1 , 𝑏1, ..., 𝑏𝑇2 } is the union set of forward edges 𝐸𝐹 = {𝑓𝑖 , 𝑖 ∈
[1,𝑇1]} and backward edges 𝐸𝐵 = {𝑏𝑖 , 𝑖 ∈ [1,𝑇2}]. The 𝐸𝐹 usu-
ally contains the edges for sequential and branch statements, and
𝐸𝐵 is usually composed of the loop-back edges. We describe the
components of our model below.

3.2 Node Embedding
Apart from those who treat a basic block as a sequence of state-
ments, many of existing approaches also treat it as one statement,
for example, using Spoon [44] or Joern [51, 57]. Therefore, in our
work, a node of the CFG built from one Java method is a statement
(see Figure 1). The semantics of nodes is fundamental for checking
the functionality of the whole graph. Existing work either treats
them as independent IDs [40] or bag of words [6], which is not suf-
ficient for representing the meaning of a node since the sequential
naturalness matters [17]. Also, the buggy nodes can disrupt the
correct control flow by a large margin especially for the change of
conditional expressions. Hence, we adopt the LSTM [18] to model
the sequences of tokens in CFG nodes for better capturing the se-
mantics of statements. At the same time, in order to distinguish
whether the node after the branch statement is inside or outside
its body (that is, the condition is true or false), we add a "T" or "F"
before the node accordingly.

Given a node 𝑛𝑖 = {𝑐𝑖1 , ...𝑐𝑖𝐿 } with the length 𝑖𝐿 (i.e., the number
of tokens in it), each of which is first embedded into a vector via a
randomly initialized embedding matrix𝑊𝑒 , that is, 𝑥𝑖𝑡 =𝑊𝑒𝑐𝑖𝑡 . The
token embeddings will be updated during the training procedure
to yield the best𝑊𝑒 . Afterwards, we use the LSTM network to
encode 𝑛𝑖 based on the token embeddings. To further enhance
the capability of capturing the context information within long
token sequences, we adopt the Bidirectional LSTM (BiLSTM) [39]

to obtain the hidden states:

ℎ𝑖𝑡 = 𝐵𝑖𝐿𝑆𝑇𝑀 (𝑥𝑖𝑡 , ℎ𝑖𝑡−1 ). (1)

We compute the average value of the hidden states to get the vectors
of individual nodes. Next, we encode the control flow of the CFG
to learn the structural information among the nodes.

3.3 Control Flow Encoding
The intra-procedure control flow of a single method is represented
by the paths from the BEGIN node to the EXIT node without re-
peated edges in the CFG. Obviously, the edge directions, node
orders and the long-term dependencies between two nodes in the
control flow paths are important for capturing the global control
flow structure since the control dependencies are embedded in
them. However, existing GGNNs [6, 44] destroy the node order by
treating the nodes separately. Moreover, take the CFG in Figure
1(b) as an example, after 2 iterations, we can see that GGNN can
only learn the information propagated from local neighbourhood
nodes within 2 steps in Figure 3(a). For the possible long-distance
dependencies such as node 8 and node 2, GGNN must increase the
iteration number to get more information from remote nodes. Due
to the aggregation operation of each node (regardless of which
implementation of GGNN variants), the propagated node informa-
tion gets diluted when the intermediate nodes repeatedly compute
during multiple iterations. That is, if we want node 8 to get the
information from node 2, the aggregation operations of node 6 will
be computed for five times, node 5 for four times and so on. In this
way, the information of node 2 will be absorbed by the intermediate
nodes. Thus GGNN usually achieves the best performance when
the iteration number is not very big. This makes it cannot capture
the long-term dependencies well, which is also observed in Section
4.

To avoid this limitation of existing GGNNs, we propose a novel
method to encode the control flow paths in a CFG. Intuitively, for
each control flow path (as shown in Figure 1(c)), we can directly
adopt LSTM to encode it and learn the long-term dependencies.
But that will lose the global structure of CFG and result in much
repeated computation. Also, considering that the control flow paths
of one CFG usually share many common nodes, we do not train
different LSTM models for different control flow paths. Instead,
the model parameters of these nodes are shared through one sin-
gle graph-structured LSTM unit during the traversal of the graph.
Therefore, the control flow knowledge can be efficiently captured
even for the long-distance dependencies.

Specifically, suppose we have the vectors of nodes {𝑥1, ...𝑥𝐾 },
the forward edges 𝐸𝐹 and the backward edges 𝐸𝐵 , we first con-
vert the edges into adjacency matrices 𝐴𝐹 = 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 (𝐸𝐹 ), 𝐴𝐵 =

𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 (𝐸𝐵), where the dimension of one matrix is 𝐷 |𝐾 | ×𝐷 |𝐾 |
and the nodes are arranged by the position they appear in the CFG.
Then we design a graph-structured LSTM unit by adapting the
standard LSTM [18] to graph topology for embedding the CFG.
Fundamentally, our model differs from standard LSTM in that we
compose such units to a graph structure by the breadth-first traver-
sal from BEGIN to EXIT nodes, whereas a standard LSTM composes
the units in a sequential way. We start the process by initializing
the hidden states and memory cells with zeros, which will be jointly
updated based on the transitions of forward edges and backward
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public Foo bar() {
……
while(cond1){

if (cond2) {
……

}
}
……

}

1
2
3
4
5
6
7
8
9

ℎ𝑖1 … ℎ𝑖𝐿

𝑥𝑖

𝑛i

𝑥1 ℎ1

𝑥2 ℎ2

𝑥3 ℎ3

𝑥4 ℎ4

𝑥5 ℎ5

𝑥6 ℎ6

①

②

③

④

④

⑤

⑥

One conditional 
expression 

in the method

Preprocessing Node Embedding Control Flow Encoding

<s>cond2</s>

𝑛1

𝑛2

𝑛4

𝑛3

𝑛5

𝑛6

𝑃𝑎𝑡ℎ 1
𝑃𝑎𝑡ℎ 2
𝑃𝑎𝑡ℎ 3

𝑣

API-aware 
Softmax

Buggy?

API-usage Attention

…𝑐𝑖1 𝑐𝑖𝐿

⑦

Figure 2: Overview of our approach. The red arrow in the left denotes the condition expression “cond2” under inspection.
The circled numbers indicate the encoding order of the edges. The "Path 1" is (𝑛1 → 𝑛2 → 𝑛3 → 𝑛5 → 𝑛2 → 𝑛6), "Path 2" is
(𝑛1 → 𝑛2 → 𝑛3 → 𝑛4 → 𝑛5 → 𝑛2 → 𝑛6), and "Path 3" is (𝑛1 → 𝑛2 → 𝑛6). The "API" annotation in the right denotes that the
corresponding node contains an API use.

edges successively. Since the loops may exist in CFGs, such as the
forward and backward edges between node 6 and node 7 in Figure 1,
we encode the forward and backward edges separately to avoid the
deadlocks during training and can perform batch training easily.

For the forward edges, we consider multiple paths together to
calculate the hidden state ℎ𝑓

𝑘
of the 𝑘-th node. First, we obtain the

hidden states of its predecessors by matrix multiplication, that is:

ℎ̃
𝑓

𝑘
= 𝐴𝐹 (𝑘) [ℎ

𝑓

1 · · ·ℎ
𝑓

𝐾
] (2)

𝐴𝐹 (𝑘) denotes the direct predecessors of the node in the 𝑘-th col-
umn of 𝐴𝐹 . Then, we adapt the formulas of a standard LSTM unit

to support the previous hidden state ℎ̃𝑓
𝑘
and the aggregation of

multiple memory cells by the following equations:

𝑖𝑘 = 𝜎 (𝑊𝑖𝑥𝑘 +𝑈𝑖ℎ̃
𝑓

𝑘
+ 𝑏𝑖 ),

𝑓𝑘 = 𝜎 (𝑊𝑓 𝑥𝑘 +𝑈𝑓 ℎ̃
𝑓

𝑘
+ 𝑏 𝑓 ),

𝑜𝑘 = 𝜎 (𝑊𝑜𝑥𝑘 +𝑈𝑜ℎ̃
𝑓

𝑘
+ 𝑏𝑜 ),

𝑢𝑘 = 𝑡𝑎𝑛ℎ(𝑊𝑢𝑥𝑘 +𝑈𝑢ℎ̃
𝑓

𝑘
+ 𝑏𝑢 ),

𝑐
𝑓

𝑘
= 𝑖𝑘 ⊙ 𝑢𝑘 +

𝑃𝑘∑︁
𝑝=1

𝑓𝑘 ⊙ 𝑐
𝑓
𝑝 ,

ℎ
𝑓

𝑘
= 𝑜𝑘 ⊙ 𝑡𝑎𝑛ℎ(𝑐

𝑓

𝑘
) .

(3)

Here 𝑐 𝑓𝑝 is the memory cell of one predecessor of node 𝑘 for the
dependency information and 𝑃𝑘 is the number of the predecessors.
Other notations are similar to the standard LSTM, for example,
𝑖𝑘 , 𝑓𝑘 , 𝑜𝑘 are the input gate, forget gate and output gate respectively.
𝜎 is an activation function and ⊙ is element-wise multiplication.
𝑊𝑖 ,𝑊𝑓 ,𝑊𝑜 ,𝑊𝑢 ,𝑈𝑖 ,𝑈𝑓 ,𝑈𝑜 ,𝑈𝑢 are weight matrices and 𝑏𝑖 , 𝑏 𝑓 , 𝑏𝑜 , 𝑏𝑢
are bias terms. As shown in the top half of Figure 3(b), such node

information propagation along all forward edges can better cap-
ture long-term dependencies than GGNN. For example, node 8 can
eventually get the information from node 1. This process encodes
the first and third paths of Figure 1(c) together since there are only
forward edges in them.

After that, we further capture the backward flow of the node and
combine it with the forward one to obtain the new hidden states
ℎ𝑘 for the integral control flow information:

ℎ𝑏
𝑘
= 𝐴𝐵 (𝑘) [ℎ

𝑓

1 · · ·ℎ
𝑓

𝐾
],

ℎ𝑘 = ℎ
𝑓

𝑘
+ ℎ𝑏

𝑘
.

(4)

For instance in the bottom of Figure 3(b), the information of node 7
is transferred to node 6 by a backward edge and is further combined
with node 8 and node 10 along forward edges. Eventually, the
second path of Figure 1(c) is encoded.

Similar to BiLSTM, we also enhance the context information of
each node. We get the additional information through reverse tra-
versal. That is, we transpose the matrices 𝐴𝐹 and 𝐴𝐵 , and calculate
the hidden states

←−
ℎ𝑘 from 𝑛𝐾 to 𝑛1 with Equations 3 and 4. The

two kinds of hidden states
−→
ℎ𝑘 and

←−
ℎ𝑘 are concatenated as the node

representations.
Compared with existing GGNNs, the information of nodes in

control flow paths is efficiently propagated through the forward
and backward edges, even for the long-term dependencies. In this
way, our CFGNNmodel can learn the control flow knowledge better
than the related models.

3.4 API-Usage Attention Mechanism
The usefulness of APIs has been stressed by many studies in various
source code-related tasks [15, 58, 59]. Because conditional expres-
sions often contain API calls, and the usage patterns of API-related
statements implicitly exist in each control flow path. If there is an
anti-pattern in one control flow path, it will be beneficial to capture

1374



ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Xudong Liu, Chunming Hu, and Yang Liu

1 2 4 53 6

7

8 10

9

Iteration 1

{1} {1,2} {2,3}

{3,4} {4,5}

{3,9}

{5,6,7}

{8,9,10}

{6,8}

{6,7}

1 2 4 53 6

7

8 10

9

Iteration 2

{1} {1,2} {1,2,3}

{2,3,4} {3,4,5}

{2,3,9}

{4,5,6,7}

{6,8,9,10}

{5,6,7,8}

{5,6,7}

(a) Graph Embedding in GGNN with iteration number of 2

1 2 4 53 6

7

8 10

9{1} {1,2} {1,2,3}

{1,2,3,4}
{1,2,3,

4,5}

{1,2,3,9}

{1,2,3,
4,5,6}

{1,2,3,4,5,
6,8,9,10}

{1,2,3,4,
5,6,8}

{1,2,3,4,5,6,7}

1 2 4 53 6

7

8 10

9{1} {1,2} {1,2,3}

{1,2,3,4}
{1,2,3,

4,5}

{1,2,3,9}

{1,2,3,4,
5,6,7}

{1,2,3,4,5,
6,7,8,9,10}

{1,2,3,4,
5,6,7,8}

{1,2,3,4,5,6,7}

Forward Edges

Backward Edges

(b) Control Flow Encoding of our CFGNN

Figure 3: Comparison of the node information propagation in existing GGNN and our CFGNN, where the nodes within braces
mean that the information from these nodes has been propagated to the current node.

it for detecting the condition error. For example, in Figure 1, when
the condition “threads.isEmpty()” of node 3 is false, the API-related
statement “return Result.healthy()” of node 9 is obviously wrong
since at least one deadlocked thread exists. In contrast, the API
usage between node 3 and node 8 “Result.unhealthy()” conforms
to the anti-pattern that reports an unhealthy warning when no
deadlocked threads exist.

To help better utilize the knowledge of APIs for capturing the
interconnections between conditional and API-related nodes, we de-
sign an API-usage attention module. The attention mechanism has
been demonstrated effective in learning essential code semantics
[54, 55]. Hence, we adapt it by combining the attentionweights with
API annotations.Specifically, we annotate the nodes {𝑛1, ..., 𝑛𝐾 }
with binary signs {𝑠1, ..., 𝑠𝐾 }. We mark the API-related nodes with
1s and the others with 0s, which are used as one input for the at-
tention module. Then we design an API-aware softmax function to
adjust the scores of API-related nodes, so that the model can better
learn the API usage in the control flow paths. We first get the max
value of their hidden states as the query vector 𝑞 and then compute
the scores of each node with the following equations:

𝑔𝑘 = 𝜎 (𝑊𝑔𝑞 +𝑈𝑔ℎ𝑘 + 𝑏𝑔) ⊙ (𝑊𝑞𝑠𝑘 + 𝑏𝑞),

𝛼𝑘 =
𝑒𝑥𝑝 (𝑔𝑘 )∑𝐾
𝑘=1 𝑒𝑥𝑝 (𝑔𝑘 )

,

𝑣 =

𝐾∑︁
𝑘=1

𝛼𝑘ℎ𝑘 ,

(5)

where 𝑊𝑔,𝑈𝑔,𝑊𝑞 are weight matrices and 𝑏𝑔, 𝑏𝑞 are bias terms.
Here 𝑔𝑘 is the importance score automatically adjusted by a linear
function with 𝑠𝑘 as the parameter, which incorporates the anno-
tation information of API-related nodes. When the mark is 1, its
score will be higher than that of the statement marked with 0, so it
can automatically distinguish the API call statements in the control
flow path, and pay more attention to the abnormal usage of APIs.

The probability of the condition-related bug for the marked node
of the code fragment is calculated by

𝑦 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊𝑝𝑣 + 𝑏𝑝 ) ∈ [0, 1], (6)

where𝑊𝑝 is the weight matrix and 𝑏𝑝 is a bias term. To train the
model, we employ the binary cross-entropy loss that is defined as

L(Θ, 𝑦,𝑦) =
𝑁∑︁
𝑛=1
(−(𝑦𝑛 · 𝑙𝑜𝑔(𝑦𝑛) + (1 − 𝑦𝑛) · 𝑙𝑜𝑔(1 − 𝑦𝑛))), (7)

where 𝑦 is the ground truth for each sample, Θ represents the
parameters to be learned and 𝑁 is the total number of instances in
the training set. During testing, we make the prediction as 𝑌 = 1 if
𝑦𝑖 ≥ 𝛿 otherwise 𝑌 = 0, where 𝛿 is the threshold.

4 EVALUATION
4.1 Dataset
Our dataset is constructed based on real-world data collected from
GitHub. More specifically, we first downloaded the top 2k popular
Java repositories without forked ones based on their stars and forks,
then retrieved the commit histories of these repositories.

We built a tool to automatically identify bug-fixing commits for
condition-related bugs. For each repository, we check the commits
and corresponding commit messages. Following common practice
[27, 38, 58], we use issue IDs and keywords to identify the bug-fixing
commits. We treat a commit as bug-fixing commit if it contains
an issue ID and its commit message contains one of the following
keywords: {fix, solve, error, bug, issue, fault, mistake, incorrect}. To
further improve the data quality, we apply a recent BERT-based
tool [53] to filter out the commits that are not bug-fixing. Next, we
fetch the buggy version of the source code by rolling the commits
back. After that we scan all the patches in them and extract the
methods, where each method contains at least one change limited
to a conditional expression, for example, line 3 in Figure 1(a). The
buggy conditional statements of them are treated as positive sam-
ples for building the dataset, whose labels are 1s. In order to get the
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Table 1: The statistics of the dataset

Data Number

Source Code #TotalConditions 573,332
#BuggyConditions 77,689
#NormalConditions 495,643
MaxLen 16,705
AvgLen 82.7
#UniqTokens 533,258

CFG MaxNodeNum 5,422
AvgNodeNum 37.5
MaxNodeLen 397
AvgNodeLen 6.5

negative samples, we extract all the normal conditional statements
from the files that buggy conditions belong to, and randomly se-
lect one from each method. These negative samples are labeled as
0s. After removing duplicated samples, we got 573,332 samples as
the dataset for evaluation, including 77,689 positives and 495,643
negatives.

The detailed statistics of our curated dataset are listed in Ta-
ble 1. For source code, MaxLen and AvgLen denote the maximal
and average length of each method in terms of tokens, repectively.
#UniqTokens means the number of all unique tokens. For the cor-
responding CFGs, MaxNodeNum and AvgNodeNum denote the
maximal and average number of nodes in each CFG. MaxNodeLen
and AvgNodeLen represent the maximal and average number of
tokens in each node.

4.2 Experimental Setup
We conduct experiments on the prepared dataset to evaluate the
effectiveness of our proposed model in detecting condition-related
bugs. The dataset is split into training set, validation set, and testing
set with fractions of 80%, 10%, and 10%, respectively. We use Spoon
[36] to parse all the Java methods into CFGs and tokenize the
statements of the nodes with javalang [5]. The tools can direct
parse source code without compilation, which enable us to deal
with arbitrary code fragments.

The configurations of our models are as follows. We limit the
vocabulary size to 100k by keeping the most frequent words be-
cause too large vocabulary may lead to poor performance. The
out-of-vocabulary words are replaced with UNK. We set the maxi-
mum number of nodes and the length of statements (in terms of
#tokens) of the CFGs to 150 and 20, because such settings cover
most elements of CFGs. We set the embedding size and the dimen-
sions of hidden states to 128. The batch size is set to 64 and the
maximum epoch is 10. We use the best trained parameters of the 10
saved checkpoints for the later prediction according to their perfor-
mances on the validation set. We adopt the widely-used Adam [23]
as the optimizer with learning rate 0.001 for training our model.
The threshold 𝛿 for predicting labels is 0.5 by default.

All the experiments are conducted on a Ubuntu 16.04 server with
16 cores of 2.4GHz CPU, 128GB RAM and a Tesla V100 GPU with
32GB memory.

4.3 Baselines
We consider recent bug detection approaches that are applicable
for detecting bugs at the statement or method level, and adopt the
commonly-used metrics including precision, recall and F1-score
for comparison. We also consider two representative models that
detect vulnerabilities. To help the baselines detect buggy conditional
expressions, we insert symbols around their corresponding tokens
or nodes as our model does. We briefly introduce the baselines
below.

• Bugram. Bugram [42] is an n-gram language model based
bug detection technique that builds the n-grams to assess
the token sequences of source code with their probability
in the learned model, and report low probability sequences
as potential bugs. We built a 3-gram language model as rec-
ommended in the paper and treat it as a valid report if one
sequence exists in the target condition.
• DeepBugs. DeepBugs [37] is a learning approach to name-
based bug detection that translates each code example into
a vector by embedding identifier names from ASTs. We set
the embedding size to 128 and keep other settings as default.
• LC-Attention. LC-Attention is a neural representation of
local context for bug detection [27]. It extracts the paths
of ASTs and uses the attentional GRU layer and Convolu-
tional layer with a Multi-Head Attention to capture the syn-
tactic structure of source code. We use the default hyper-
parameters except the same settings in our model.
• CFG+GGNN. GGNN is one kind of graph neural networks
that has been applied for representing programs and detect-
ing specific bugs (e.g., variable misuse) [6, 44]. It encodes
the the graph representation of code by simultaneously ag-
gregates all incoming messages of nodes as their hidden
states and repeats the process for a fixed iteration number
to propagate information. We borrow it by taking CFG as
the input for condition-related bug detection and try the
iteration number in the range of 2 to 9 to choose the one
with the best result.
• Hybrid Graph+GGNN. Some work [6] detects variable
misuses by representing program source code as graphs. It is
based on AST to transform source code into program graphs
and learn representations over them with GGNN. Additional
edges are added to connect different uses and updates of
syntax tokens corresponding to variables for capturing the
flow of control and data through a program. We use the
default settings as recommended.
• GINN. GINN [44] is a recent graph neural network for learn-
ing semantic embeddings of program graphs and has been
evaluated on detecting variable misuses and null derefer-
ences. It makes abstractions of program graph representa-
tions, uses the hierarchy of intervals (i.e. subgraphs) that
generally represent looping constructs for scaling the learn-
ing to large graphs.
• Devign. Devign [60] is a popular vulnerability detection tool
that combines CPG and GGNN to embed the semantics of
code and then applies a convolutional layer on it. We keep
the configurations as default.
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Table 2: The effectiveness of different models for condition-
related bug detection

Models Precision Recall F1-score

Bugram 11.2 28.0 16.0
DeepBugs 48.5 22.6 30.8
AST+LC-Attention 44.2 26.9 33.4
VulCNN 37.2 24.8 29.7
Devign 50.3 29.2 36.9
Hybrid Graph+GGNN 50.5 28.3 36.3
CFG+GGNN 51.6 28.9 37.1
GINN 53.1 29.9 38.3

CFGNN 55.5 39.6 46.2

• VulCNN. VulCNN [47] is one recent vulnerability detection
tool based on PDG of source code. It applies centrality anal-
ysis to transform PDGs to image formats and uses CNN for
detection. We keep the configurations as default.

4.4 Results
We investigate the following research questions to provide a thor-
ough analysis of the experimental results.
RQ1: How does our approach perform compared with base-
lines for condition-related bug detection?

In this research question, we aim to measure the effectiveness
of our approach and how different knowledge can help detect
condition-related bugs. Table 2 presents the experimental results
on our dataset, where the best ones are shown in bold.

First, we can see that Bugram performs worst among the com-
pared methods. Even though the recall is good to some extent, the
precision is only 11.2%, which is much lower than other approaches.
This is because N-gram language model largely depends on the
co-occurrence of tokens and the context of the given code is re-
stricted to a fixed length. The narrow context limits its capability
for distinguishing normal condition expressions from buggy ones.

Deep learning-based approaches improve significantly over Bu-
gram, which largely attributes to the capability of neural networks
for capturing code semantics. For example, DeepBugs achieves
an F1-score close to 30%, although it also does not encode the
structural information. LC-Attention utilize AST to capture the
syntax information, including tokens and paths extracted from
ASTs respectively. But it performs worse than most graph-based
approaches in terms of F1-score, since it can not capture the control
flow information that is important for condition-related bugs.

Even though VulCNN takes PDG as input, it does not utilize
graph neural networks to encode the structural and dependency
information, which results in a lower performance than other graph-
based approaches. In addition, Hybrid Graph+GGNN and Devign
obtain comparable performances with CFG+GGNN. The reason
is that such hybrid graphs take AST as the backbone with some
additional edges of control flow and data flow, which include but
not highlight the effect of control flow information. This indicates
that blending too much information together may not be very ben-
eficial for detecting condition-related bugs. GINN achieves a better
performance than GGNN on CFGs, since it takes abstraction and

Table 3: Effectiveness of each major component of the pro-
posed approach

Descriptions P R F1

Node Average+Graph Average 52.8 17.6 26.4
Node Embedding+Graph Average 52.3 25.2 34.0
Node Embedding+CFE 54.2 36.1 43.3
Node Embedding+CFE+OD-Attention 55.3 37.9 45.0

CFGNN 55.5 39.6 46.2

hierarchy of intervals that represent loops to learn from large pro-
gram graphs and can capture the long-term dependencies better in
a way. However, generally GINN is designed for large graphs pro-
duced by hierarchical loops but not for the long-term dependencies
of control flow paths. Overall, it seems that all the baselines are
even not as good as a random classifier. However, our dataset is im-
balanced since the same is true of real-world projects, so we cannot
think that way. After the experiment, we get the results of Random
with 13.9% (P), 49.9 (R) and 21.7% (F1), which is substantially lower
than most approaches.

Finally, we can see that our CFGNN achieves the best perfor-
mance for all evaluation metrics among the compared methods.
Because CFGNN can capture global control flow information well
by encoding control flow paths and learn the API-usage knowledge.
RQ2: How effective are the main components of CFGNN?

CFGNN includes three main components, namely node embed-
ding, control flow encoding, and API-usage attention mechanism.
To know their effectiveness, we explore different design alternatives
from three aspects. First, we directly adopt the average pooling on
embedded vectors of tokens at the same node (Node Average). Based
on this, we utilize the average pooling again on the node vectors of
the graph (Node Average+Graph Average), which serves as a basic
reference. Then, we correspondingly replace them with our node
embedding (Node Embedding) and control flow encoding (CFE).
Based on these two components, we further introduce different
knowledge from API invocations (our CFGNN by default) and ob-
ject declaration statements (Node Embedding+CFE+OD-Attention)
through attention mechanism, respectively.

We present the experimental results in Table 3. Compared with
the basic model, Node Embedding+Graph Average achieves a much
better F1-score, which indicates that node embedding can learn
more node semantics by capturing the sequential dependencies
of tokens in one node. When adding control flow encoding (Node
Embedding+CFE), the performance improves significantly (+9.3% in
terms of F1-score) over ignoring the control flow (i.e. Node Embed-
ding+Graph Average). The reason is that our control flow encoding
has a strong capability to describe the control flow and node de-
pendencies, and can capture global information of CFG. Attention
mechanism introduces some different knowledge from API invo-
cations or object declarations, which is helpful for bug detection
on the whole. Consequently, the models with attention component
have a better performance than those without it. Introducing API
knowledge can extract dependencies between APIs well and obtain
deep semantics of the program. Introducing object declarations
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knowledge can help to understand the variable semantics in the
conditional statements to judge whether there is a bug. In addition,
the model with API-Attention is better than that with OD-Attention,
which indicates that the API knowledge is more useful than object
declarations in our bug detection framework.

In summary, the three main components of our approach (Node
Embedding, Control Flow Encoding, and API-Attention) are shown
to be effective and can combine different aspects of semantics to
achieve better performance.
RQ3: Will the number of nodes affect the capability of our
model for capturing global control flow information?

In order to explore that whether too many nodes will affect the
extraction of global and long-distance dependencies of CFGs, we
mainly conduct two experiments. One is evaluating the perfor-
mance of our CFGNN in different number of nodes. In the previous
experiments, we set the max number of nodes as 150. In this re-
search question, we set different max number of nodes respectively
to train the model and evaluate the performance. The number of
nodes is from 50 to 400 with the step of 50. The other is evaluating
the performance of GGNN with different iterations for the purpose
of comparing our model to existing graph neural networks. The
iteration number of GGNN is from 2 to 9 with the step of 1.

Figure 4(a) shows the performance of CFGNN with different
numbers of nodes. When the number is too small, it will lead to
the loss of some overall structural information and thus the perfor-
mance is lower. As the number grows, the performance increases
and finally changes little when it reaches a high coverage of nodes.
As shown in Figure 4(a), the recall is gradually ascending with fluc-
tuation and the precision is optimal at 150 nodes, whereas F1-score
is relatively stable on the whole. Figure 4(b) shows the performance
of GGNN with different iterations. We can see that the performance
of GGNN is sensitive to the iteration number and decreases greatly
with the increasing of iteration number in general. As explained
in Section 3, during the node information propagation, the large
iteration number will lead to the repeated computations of the ag-
gregation operations in the intermediate nodes and make the node
information diluted. Finally, when the iteration number is small
(i.e., 3), GGNN can capture the local node dependencies well and
achieve the best F1 value.

Table 4: The performances of different approaches for detect-
ing real condition-related bugs from Defects4J

Approach #Detected #Reported P R F1

Findbugs 1 11 9.1 1.9 3.1
Infer 0 0 - - -
Bugram 6 140 4.3 11.1 6.2
GINN 9 109 8.3 16.7 11.1

CFGNN 14 122 11.5 25.9 15.9

In summary, our CFGNN has a strong ability to capture long-
distance dependencies among nodes and its F1-score is relatively sta-
ble across different node numbers. Compared with existing GGNN,
our model can better learn the control flow information of CFGs.
RQ4:Can the proposed approach detect real condition-related
bugs in unseen projects? Although we have evaluated the pro-
posed approach on our collected dataset, it is hard to guarantee its
generalizability for unseen projects. In this RQ, we further evaluate
our approach by collecting real-world condition-related bugs from
six unseen projects in the widely-used benchmark Defects4J [22].
We manually checked all the bugs from the six projects, and got
3,246 conditions with 54 condition-related bugs as reference (the
bugs have been confirmed by previous researchers). To evaluate the
usefulness of our proposed approach in reality, we run CFGNN by
scanning these projects, record the reported bugs and calculate the
metrics based on the confirmed bugs. We compare our approach
with four representative methods: 1) Bugram, traditional simple but
effective n-gram language model; 2) GINN, the best deep learning
method for bug detection in existing work according to Table 2; 3)
Findbugs, a traditional static analysis-based tool [20], which can
work for the six complete and compilable projects of Defects4J; and
4) a more advanced static tool Infer [3]. Other baselines are excluded
due to their relatively worse performance previously, which keep
alignment with the results on this benchmark. Hence, we omit the
discussion of those approaches. We chose Findbugs because it is
a classic static tool that has been used as the baseline [27]. And
again, we considered Infer to enhance it as GINN did [44]. For those
static tools, we record the reported bugs that matches one condi-
tional statement according to error messages, so as to avoid the
interference of other kinds of bugs. The results are listed in Table 4,
where #Reported and #Detected mean the reported positives and
true positives respectively.

Comparing Table 4 and Table 2, we can see that the detection
performance of Bugram, GINN and CFGNN decreases for unseen
projects. This is because the unseen projects may have some ad-
ditional features that do not exist in the training set. Findbugs
detected only one condition-related bug, and Infer did not find any
one. These static tools perform much worse than learning-based
ones because they match predefined code patterns for detecting
bugs. However, it is difficult to define rules for the buggy condi-
tions that are highly relevant to code logic. Besides, Infer mainly
reports memory-related bugs with a single line, thus the number of
warnings is 0. Compared with the other four methods, our CFGNN
achieves the best results because it can capture the global control
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flow information and the API knowledge in CFGs. In summary, our
CFGNN can detect the greatest number (i.e. 14) of condition-related
bugs from the 122 warnings.

4.5 Examples
To further investigate our approach, we conduct a qualitative study
by analyzing the following two examples shown in Table 5. We
present the positions of buggy condition expressions (marked by
“//Inspected”) and their fixes for ease of illustration.
Case 1. This case (about the 𝑜𝑛𝐿𝑜𝑎𝑑𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑 function) shows a
condition-related bug caused by the miss-checking of the variable
“data”. To fix it, the developer checks the size of it by invoking an
API “getCount()”. Since it is comparatively simple, our approach
and most of the baselines (except Bugram) successfully detected
and reported it as a bug by learning common patterns of its us-
age. One possible reason is that Bugram detects bugs based on
the low joint probability of the short token sequence, while the
inspected condition expression is quite common and thus has a
high probability.
Case 2. This case (about the 𝑜𝑛𝐵𝑖𝑛𝑑𝑉𝑖𝑒𝑤𝐻𝑜𝑙𝑑𝑒𝑟 function) shows a
more complex situationwheremultiple factors lead to the condition-
related bug. While all the baselines failed to detect it, our model
worked well. According to the fix of the buggy code, there can be
two main factors. The first is that the buggy condition expression
is closely associated with the global context information. For ex-
ample, the statements that deal with the variables “holder” and
“position” have a strong control dependency relationship among
them. This causes the changes of multiple related lines. The second
is that the use of Android API “getAdapterPosition” for avoiding
redundant holders will change the outer variable “mLastPosition”
bymistake. Thus the APIs of “mHolders.get()” and “‘mHolders.put()”
are invoked instead. It is clear that only considering the syntactic
knowledge or local dependency information as what the baselines
did is not sufficient to identify such a bug. On the contrary, our
model captures the global control flow dependency and API knowl-
edge of CFG, and can successfully find the buggy condition.

4.6 Discussion
4.6.1 Practicality. As described, our goal is to help developers find
condition-related bugs and hopefully provide some clues (i.e., the
locations of the buggy conditions) for debugging it. Up to this point,
we have only evaluated our approach on seen and unseen projects
with known ground-truths. It remains unclear whether our tool can
be used in practice for finding new/unknown bugs. Therefore, we
perform condition-related bug detection on three popular projects
including Apache Log4j [1], Gephi [4] and Dlink [2]. We use our
trained model to scan all the condition statements of Java methods
in the project files and collect reported warnings. Note that it is
not necessary to specify the positions of conditional statements
here. As we state in Section 3, we can automatically identify the
positions of those conditions in if and while statements through
syntax parsing (e.g., javalang), therefore no extra effort needed for
developers at this stage. Then we manually check all the warnings
by comparing them with similar samples in our training set or
further investigating the related code to confirm the bugs. In total,
we found 26 new condition-related bugs that were not reported

Table 5: Two cases of condition-related bugs detected by dif-
ferent approaches

Case 1

void onLoadFinished(Loader<Cursor> loader, final Cursor data)

{

- if (data != null){ //Inspected

+ if (data != null && data.getCount() > 0){

data.moveToFirst();

final ExchangeRate exchangeRate =

ExchangeRatesProvider.getExchangeRate(data);

if (state == State.INPUT)

amountCalculatorLink.

setExchangeRate(exchangeRate);

}

}

Case 2

void onBindViewHolder(ViewHolder holder, int position)

{

mAdapter.onBindViewHolder(holder, position);

//Inspected

- if (!isFirstOnly || holder.getAdapterPosition()

- > mLastPosition) {

+ if (!isFirstOnly || position > mLastPosition ||

+ !Integer.valueOf(position).

+ equals(mHolders.get(holder))) {

for (Animator anim : getAnimators(holder.itemView)) {

anim.setDuration(mDuration).start();

anim.setInterpolator(mInterpolator);

}

- mLastPosition = holder.getAdapterPosition();

+ mHolders.put(holder, position);

} else {

ViewHelper.clear(holder.itemView);

}

}

by the developers before. We had reported the found bugs to the
developers, and 7 bugs were confirmed by developers. We helped
fix 4 bugs through issues or pull requests, and 3 bugs were fixed by
themselves during CI. While the other 19 bugs did not get responses
from developers and are pending for further confirmation.

4.6.2 Limitation. Even though we have made good progress on de-
tecting condition-related bugs, our work also has some limitations.
First, we only focus on condition-related bugs while there have
been many general-purpose bug detectors. The starting point is
that existing studies revealed the high frequency of bugs related to
conditions, whereas few of them explored the solutions. Therefore,
similar to some work (e.g., DeepBugs and GINN) that detects other
specific types of bugs, we propose to detect buggy conditions and
investigate how to incorporate more domain knowledge for the
detection. A follow-up limitation is that overall the performance is
not very satisfactory for a fully automated application. In particular,
the fraction of false positives is comparatively high (e.g., about 45%).
However, it should be noted that our dataset is imbalanced as it is in
real-world projects. When taking true negatives into consideration,
the number of false positives is not big (< 5%). Furthermore, it is
indeed challenging to automatically detect such bugs since they are
tied to complex code logic. In practice, one can increase prediction
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threshold to further reduce false positives, and we hope our work
can inspire more research attention.

5 THREATS TO VALIDITY
Internal Validity. When building datasets, although we followed
the previous studies to collect buggy code from the real-world
projects, we cannot guarantee that all these bugs are real bugs.
Strictly speaking, we should collect those with test cases and run
them to confirm all the bugs. However, it is not feasible in this work
because we need a large-scale dataset. In the future, we will explore
better techniques (e.g., more advanced tools than [53] used in this
paper ) for improving the quality of data.

External Validity. The code of most baselines are publicly avail-
able except for Bugram since the repository has been removed as
reported in [27]. To mitigate it, we followed the practice of the
prior work and tried our best to replicate Bugram carefully. We
will eliminate this threat as soon as the tool is publicly available.
Moreover, since none of the baselines are proposed specifically
for detecting condition-related bugs, it may seem unfair for us to
consider them as baselines. However, as far as we know, there is
no existing work that aims to detect condition-related bugs. Funda-
mentally, those bug detectors especially general-purpose ones are
supposed to work for all types of bugs including condition-related
bugs. Also, the baselines share the same training set and test set
with ours and we have tried best configurations. Altogether, we
believe the comparison is fair in our evaluation.

6 RELATEDWORK
6.1 Studies on Condition-Related Bugs
There have been many studies on different types of bugs due to the
diversity, universality and complexity of the bugs. Among these
studies, some involve condition-related bugs, which occur in con-
ditional expressions (e.g., the headers of if and while statements)
and are common in programs. For example, Martinez et al. [34]
have shown that if conditions are among the most error-prone
elements in Java programs. The dataset in Xuan et al. [50] contains
16 bugs with buggy if conditions and 6 bugs with missing pre-
conditions from real-world projects. Campos et al. [10] conduct a
manual analysis involving 369 real bug fixes from five open-source
projects, which shows that 45% of these bugs occur in if conditional
statements.

At the same time, some methods for repairing condition-based
bugs have been proposed. Accurate Condition Synthesis [49] fo-
cuses on condition synthesis, and could produce precise patches
that have a relatively high probability to be correct. Nopol [50] takes
a buggy program and a test suite as the input to generate a patch
with a conditional expression, which can effectively fix bugs with
buggy if conditions and missing preconditions. Staged Program
Repair (SPR) [33] combines staged program repair and condition
synthesis to generate correct repairs, working productively with a
set of parameterized transformation schemas.

6.2 Deep Learning-Based Bug Detection
Traditional methods about bug detection, such as static analysis,
rule mining, testing techniques and so on, have been studied for
a long time. Recently, deep learning based approaches have been

applied to automated bug detection. DeepBugs [37] is proposed
to detect name-based bugs, which embeds identifier names from
ASTs and converts each code example into a vector for detection.
LC-Attention [27] extracts the paths along the nodes of ASTs, and
models them by combining the attentional GRU layer and Con-
volutional layer with a Multi-Head Attention for bug detection.
Gated Graph Neural Networks (GGNN) is used to embed the pro-
gram graphs adapted from ASTs or CFGs for detecting variable
misuses [6, 44], which can represent both the syntactic and se-
mantic information of source code. Marko et al. [41] trains the
LSTM and pointer networks to localize and repair variable-misuse
bugs. Also, deep learning-based vulnerability detection has been
proposed [26, 29, 30, 47, 60]. Vuldeepecker [30] extracts code slices
and uses BiLSTM to encode them for detecting vulnerabilities. De-
vign [60] uses graph neural network for graph-level classification
through learning on a rich set of code semantic representations to
identify code vulnerability. VulCNN [47] converts the source code
of a function into an image based on PDG, and trains a CNN model
to detect large-scale source code vulnerabilities. Different from the
above work, our model focuses on detecting the condition-related
bugs by capturing the global control flow dependencies and API
knowledge.

7 CONCLUSION
In this paper, we propose a CFG-based Graph Neural Network for
detecting the condition-related bugs. The proposed model captures
the global control flow information in CFGs and leverages the
API knowledge with API-usage attention. We build a large-scale
condition-related bug dataset with over 573k buggy and non-buggy
conditional expressions for evaluation. The experimental results
demonstrate the effectiveness of our approach.

In future work, we plan to improve our CFGNNmodel by refining
the attention mechanism to better incorporate API-usage, explor-
ing how to more efficiently capture control flow information, and
applying our model to other types of bugs beyond condition-related
ones. We also aim to integrate our model into practical software
development tools to aid programmers in bug detection and preven-
tion in real-world scenarios. Our source code and data are publicly
available at https://github.com/zhangj111/ConditionBugs.
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