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Comprehensive Fine-Tuning Large Language
Models of Code for Automated Program Repair

Kai Huang *?, Jian Zhang “, Xinlei Bao

Abstract—Automated program repair (APR) research has
entered the era of large language models (LLM), and researchers
have conducted several empirical studies to explore the repair
capabilities of LLMs for APR. Many studies adopt the zero/few-
shot learning paradigm for APR, which directly use LLMs
to generate the possibly correct code given its surrounding
context. Though effective, the repair capabilities of LLMs
based on the fine-tuning paradigm have yet to be extensively
explored. Also, it remains unknown whether LLMs have the
potential to repair more complicated bugs (e.g., multi-hunk
bugs). To fill the gap, in the conference version of this work,
we conduct an initial study on the program repair capability
of million-level LLMs in the fine-tuning paradigm. We select
5 popular million-level LLMs with representative pre-training
architectures, including CodeBERT, GraphCodeBERT, PLBART,
CodeT5, and UniXcoder. We consider 3 typical program repair
scenarios (i.e., bugs, vulnerabilities, and errors) involving 3
programming languages (i.e., Java, C/C++, and JavaScript).
Our experimental results show that fine-tuning these LLMs
can significantly outperform previous state-of-the-art APR tools.
However, the repair capabilities of billion-level LLMs for APR
remain largely unexplored. Moreover, their substantial model
sizes significantly increase the computational cost of fine-tuning.
While parameter-efficient fine-tuning (PEFT) techniques offer
a promising solution, their effectiveness in repair tasks and
the selection of appropriate PEFT strategies remain unclear.
Similarly, many novel APR strategies have been developed for
non-pre-trained models, yet their applicability and effectiveness
on LLMs are still unexamined. To address these gaps, we extend
our prior study through three key dimensions: 1) LLM4APR,
which evaluates the repair capabilities of five billion-level LLM
families (InCoder, CodeGeeX, CodeGen, StarCoder, and CodelL-
lama) under the fine-tuning paradigm; 2) PEFT4LLM, which
compares full-parameter fine-tuning (FPFT) with three PEFT
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techniques (LoRA, AdaLoRA, and IA3) to determine optimal
strategies that balance repair cost and performance of LLMs; and
3) APR4LLM, which investigates the potential of a basic neural
machine translation (NMT) approach alongside three advanced
repair strategies (TENURE, ITER, and KATANA) to enhance
the repair capabilities of LLMs. Overall, our extensive results
suggest that larger scale models typically have better repair
capabilities. The LoRA technique is still the best choice for
LLM4APR studies. Different repair strategies result in different
repair capabilities for the foundation models, but some of the
strategies that performed well on the non-pre-trained model did
not show an advantage on LLMs. Besides, we released all LLMs
fine-tuned with repair tasks to facilitate LLM4APR research, and
we encourage researchers to develop more powerful APR tools
on the basis of these repair LLMs.

Index Terms—Large language model, automated program
repair, fine-tuning.

I. INTRODUCTION

UTOMATED program repair (APR) techniques [1], [2],

[31, [4], [5], [6] aim to automate the repair of software de-
fects to reduce manual work and guarantee the software quality.
Among them, learning-based APR techniques [4] have attracted
much attention in recent years. In general, the Neural Machine
Translation (NMT) model is adopted for supervised training on
bug-fix pairs (BFPs) [7], which translates the buggy program to
its fixed version. Compared to traditional APR techniques [1],
[2], [3], both the quantity and diversity of fixed bugs have been
improved through the use of learning-based APR tools [4].

In particular, with the recent rapid development of large
language models (LLMs) [8], [9], APR research has also en-
tered the era of LLMs. Currently, researchers have conducted
several empirical studies [10], [11], [12], [13], [14], [15], [16]
to explore the repair capability of LLMs and proposed many
LLM-based APR tools or frameworks [17], [18], [19], [20],
[21], [22], [23], [24], [25], [26], [27], [28], [29]. For example,
recent empirical studies [10], [11], [12], [13], [14], [15], [16]
have explored the repair capability of LLMs under fine-tuning
and prompt learning (or zero/few-shot learning) paradigms, and
have shown that fine-tuning is an effective means to further
enhance the repair capability of LLMs. Among the research pa-
pers, Xia et al. [19] propose ChatRepair, a conversational repair
paradigm based on ChatGPT; Jin et al. [23] implement fine-
tuning of Codex to build an end-to-end APR tool, InferFix, for
industrial deployments; and Wei et al. [20] propose the Repilot
framework to assist the LLM to better synthesize patches and
thus enhance the repair capability.
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Despite all this, most existing studies [10], [11], [16], [17],
[19], [20], [22], [28], [30] focus on directly using the LLM
with zero-shot or few-shot prompting, while the benefit of
fine-tuning LLMs for APR is not yet fully understood [5].
The missed opportunities are twofold: 1) Even though Jiang
et al. [13] explored the LLM fine-tuning, however, as stated, the
applied fine-tuning is straightforward and simple. It is still un-
clear regarding the impact of specific design choices with fine-
tuning, and what factors limit the repair capability of LLMs.
2) The scope of prior work typically lies within limited bug
types (e.g., single-hunk and common bugs), the generality of
APR tools has been largely neglected (e.g., multi-hunk bugs
and vulnerabilities).

To address the above issues, the conference version of this pa-
per [15] comprehensively explores the repair ability of million-
level LLMs under the NMT fine-tuning paradigm, aiming to
provide more empirical guidance for the research of Large Lan-
guage Models for Automated Program Repair (LLM4APR).
Our initial LLM4APR study investigates the repair capability
of 5 million-level LLMs in the NMT fine-tuning paradigm by
following an encoder-decoder generation procedure on BFPs.
We apply the fine-tuned LLMs on 7 popular evaluation bench-
marks of different programming languages (PLs), and take into
account software bugs, security vulnerabilities, and program-
ming errors. For simplicity, we collectively refer to them as
defects. Apart from single-hunk defects, we also evaluate the
ability of LLMs for repairing multi-hunk defects. Specifically,
we focus on the following key aspects when using million-level
LLMs for APR.

Repair Effectiveness of Million-level LLLMs. We study the
repair effectiveness of 5 million-level LLMs under the NMT
fine-tuning paradigm in 6 repair tasks (Section IV-C2 Task @-
®). Our results show that LLMs’ repair capability outperforms
many previous APR tools. For bug repair, the best model fixes
34 and 25 bugs more than Jiang et al. [13] and Li et al. [31];
For vulnerability repair, the best repair accuracy is improved by
20.04% compared to VulRepair [24]. For error repair, our best
repair accuracy outperforms TFix [32] by 11.32%. Besides, we
also examine the performance of LLMs for multi-hunk fixes.
The best million-level LLM fixed 9 more multi-hunk bugs than
DEAR [31]. These results demonstrate that fine-tuning million-
level LLMs has great potential for APR research.

Design Choices. We undertake an in-depth exploration of
different design choices in fine-tuning (Section IV-Cl), in-
cluding code abstraction [7] (Section II-A2), code representa-
tion [33] (Section II-A3), and checkpoint selection [34] (Sec-
tion II-C). The results imply that: 1) The code abstraction
strategy used in earlier work [7] is unsuitable for LLMs and
may even reduce the repair capability of LLMs. 2) Using
the representation of buggy code with fault locations and fix
code without surrounding tokens can yield better repair results.
3) Different repair scenarios may require different evaluation
metrics for checkpoint selection to obtain the best fine-tuned
model. And we find the ensemble strategy that combines mul-
tiple selected checkpoints is a good way to enhance the repair
effectiveness.
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Future Directions. The limitations and challenges of fine-
tuning LLMs for APR are also analyzed (Section IV-C3).
We thoroughly discussed two major factors that affect the repair
capability of LLMs. On the one hand, LLMs often fail to
generate correct patches due to the lack of essential repair in-
gredients [35]. For instance, important elements such as method
names, variables, or other components related to the buggy code
may not be captured by the model, preventing it from fully
understanding the root cause of the bug and leading to incorrect
fixes [29]. On the other hand, the candidate patch space is
greatly restricted. For example, when using the beam search
strategy to generate patches for LLMs, the available patch space
is typically constrained by GPU memory, making it difficult to
scale to larger patch sizes [36]. Since the hardware resources
often cannot meet the high computational demands of LLMs
for massive patches. Based on this, we propose some mitigation
measures and future directions.

However, the rapid development of LLMs has brought new
challenges and opportunities, which were not involved in our
previous LLM4APR study [15]. These include: 1) Large-scale
billion-level LL.Ms built on decoder-only architecture have yet
to be fully investigated. Considering the computing resource
constraints, our previous study [15] only covered million-level
LLMs. Besides, although recent studies [13], [14] have imple-
mented fine-tuning on billion-level LLMs, however, they used
model sizes no more than 6B (i.e., InCoder-6B and CodeGen-
6B), and such model sizes do not fully reflect the current state-
of-the-art LLMs (e.g., CodeLlama-70B and StarCoder-15B) in
terms of their repair capabilities. 2) The effectiveness of dif-
ferent parameter-efficient fine-tuning (PEFT) techniques [37]
designed for large-scale LLMs is unclear. Fine-tuning large-
scale billion-level LLMs under computing resource constraints
is difficult, fortunately the emergence of PEFT techniques has
alleviated this challenge. PEFT techniques are designed to save
memory without sacrificing performance. Although PEFT tech-
niques have been applied to APR work [26], it remains unclear
how to select appropriate PEFT techniques to better unlock
the repair capability of LLMs. 3) Potential repair strategies
for improving those decoder-only LLMs remain unexplored.
In fact, researchers have proposed a variety of novel repair
strategies [33], [38], [39], [40], [41], [42], [43], [44], [45], [46],
[47], [48], [49] and implemented them on non-pre-trained mod-
els (e.g., RNN, CNN, Transformer, etc.). Theoretically, many
repair strategies are model-independent, so these approaches
can be applied to LLMs as well. However, it is not clear whether
these novel approaches work well on LLMs or whether these
strategies can further stimulate the repair potential of LLMs.

To bridge above gaps, this study extend our previous work
by further focusing on the repair ability of billion-level LLMs
under the NMT fine-tuning paradigm. We investigate the re-
pair capability of 5 billion-level LLM families for APR (i.e.,
LLM4APR study) on the test benchmark without the data leak-
age risk. In particular, we explore the impact of mainstream
PEFT techniques for LLMs (i.e., PEFT4LLM study) and reveal
the generalization ability of novel APR techniques for LLMs
(i.e., APR4LLM study) on the program repair task. Specifically,
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Fig. 1. The workflow of NMT fine-tuning based LLM4APR.

we focus on the following keys aspects when using billion-level
LLMs for APR.

Repair Effectiveness of Billion-level LLMs. We study
the repair effectiveness of 5 billion-level LLM families under
the NMT fine-tuning paradigm on Defects4] V1.2 [50] and
HumanEval-Java [13] (Section IV-C1 Task @). Our results show
that larger model sizes bring better repair capabilities while also
tend to take more memory cost and time cost. Therefore, how
to reduce the memory as well as accelerate the speed of model
training and inference in LLM4APR research is a key issue.

PEFT Options. We explore the impact of 3 PEFT techniques
[37] (i.e., LoORA [51], AdaLoRA [52], and IA3 [53]) on billion-
level LLMs for APR research (Section V). Our results indicate
that PEFT techniques can outperform full-parameter fine-tuning
(FPFT) [13] strategy in LLM4APR research. For example, the
repair effectiveness of LLMs after fine-tuning with the LoRA
technique rivaled or even exceeded that of the FPFT strategy.
Notably, some more recent PEFT techniques did not show
significant advantages in the APR task. For example, AdaLoRA
does not show significant improvement in repair effectiveness,
memory cost, and time cost compared to other PEFT or FPFT
strategies. And our results suggest that LoRA remains the best
choice for LLM4APR. However, it is undeniable that the PEFT
technique slows down model training while reducing the GPU
memory cost.

Repair Strategies. We examine the effects of 3 novel repair
strategies - TENURE [49], ITER [45], and KATANA [54] along
with the basic NMT strategy [7], [13] in enhancing the repair ca-
pabilities of LLMs (Section VI). Our results indicate that these
state-of-the-art APR techniques can be generalized to LLMs,
yielding effective repair results. Moreover, each repair strategy
contributes uniquely to the repair capabilities of LLMs. How-
ever, some repair strategies, when implemented with LLMs,
perform worse than expected. For instance, the implementation
of TENURE on LLMs underperformed compared to the basic
NMT fine-tuning. This highlights the need to revisit the effec-
tiveness of previous APR techniques in the era of LLMs.

To sum up, this paper makes the following contributions:

« Initial Study Contributions. The conference version [15]

of this paper presents following contributions: First, we

study the repair effectiveness of 5 million-level LLMs
(CodeBERT, GraphCodeBERT, PLBART, CodeT5, and
UniXcoder) in the fine-tuning paradigm for APR across
3 typical repair scenarios (software bugs, security vulner-
abilities, and programming errors). Second, we conduct an
in-depth investigation of design choices that may enhance
the repair capability, and achieve significant improvements
over vanilla fine-tuning using same models. Third, our
study reveals that LLMs are capable of repairing fairly
complex multi-hunk defects to some extent, and there is
a good potential to tackle more complicated ones. Fourth,
we analyze several key factors that limit the repair capa-
bility of LLMs and propose feasible solutions to mitigate
them.

* Extended Study Contributions. The extended parts of
this paper presents following contributions: First, we study
the repair effectiveness of 5 billion-level LLM families (In-
Coder, CodeGeeX, CodeGen, Codel.lama, and StarCoder)
under the NTM fine-tuning paradigm. Second, we provide
guidance on PEFT options for LLM4APR research to bet-
ter unlock LLMs’ repair performance under the computing
resource constraint. Third, we reveal the potential of recent
novel repair approaches in enhancing the repair capabil-
ities of LLMs. Finally, we release 22 fine-tuned LLMs
using different repair strategies and encourage future re-
searchers to develop more powerful APR tools based on
these LLMs. Our artifacts including the code and data are
made publicly available [55].

II. METHODOLOGY

In this section, we present the methodology of LLM4APR.
The workflow of fine-tuning LLMs for APR follows the ba-
sic learning-based APR technique [4], as shown in Fig. 1.
Generally, applying LLMs to the APR workflow in the NMT
fine-tuning paradigm involves the following steps: 1) data pre-
processing, 2) model training and tuning, 3) model evaluation,
4) patch generation, 5) patch post-processing, and 6) patch
validation. Next, we describe the technical details of each step.
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A. Data Pre-Processing

Data pre-processing phase aims to convert the raw source
code into a format that LLM can efficiently process. We adopt
the common practice of using BFPs [7] for learning to transform
the buggy code to fixed code at the method level.

1) BFPs Extraction: Here, we follow the basic NMT pro-
cessing workflow, using training data of BFPs [7] to learn for
converting the buggy code to fixed code. We adopt the approach
of most work, extracting method-level BFPs from the source
code; this is done because the input/output length of models
is usually limited, and it is often difficult to process the entire
source code file. Therefore, it is a common practice to use
method-level contextual information.

2) Code Abstraction: Code abstraction processing was first
introduced to bug repair tasks by Tufano et al. [7]. This tech-
nique alleviates the out-of-vocabulary (OOV) problem by nor-
malizing code elements and facilitates models to learn generic
fixing patterns [4], [5]. Subsequently, many following works
[31], [38], [42], [56] adopt the similar strategy for improvement.
However, it is unclear whether code abstraction could benefit
LLMs. Therefore, we explore the impact of code abstraction [7]
as the first design choice.

3) Code Representation: Inlearning-based APR techniques,
code representation is an essential factor for the repair capa-
bility. Earlier works only focused on single-hunk bugs and
design the code representation specific to them. Recently, VRe-
pair [33] has extended the NMT model to multi-hunk fixes
by improving the code representation. To explore the impact
of different code representations on LLMs’ repair capability,
we consider four code representations, abbreviated as CRI,
CR2, CR3, and CR4. As shown in Fig. 2, all of them are
based on token sequence because existing LLMs are gener-
ally limited to such a representation. The details are illustrated
below.

e CR1: This is the original representation of NMT-based
APR work [7], which takes a whole buggy method as
input and a whole fixed method as output. CR/ aims to
allow the model to automatically fix defects without fault
localization (FL).

* CR2: CR2 is based on CRI1, where the bug/fix hunk
are marked with special tokens (<BUGS>, <BUGE>,
<FIXS>, <FIXE>) so that the model learns the tran-
sition from bug code to fixed code with the help of FL
information. Hence, we use it to analyze the impact of FL
information on the repair capability.

* CRa3: Inspired by SequenceR [38], we remove the context
of fixed code from CR?2 to reduce the model output length
and speed up the training and prediction. This represen-
tation is used to analyze the impact of simplifying the
learning target (i.e., the output) on the repair capability.

* CR4: This is VRepair’s code representation for multi-hunk
fixes [33]. Unlike CR3, CR4 uses different mark ways to
distinguish between different repair behaviors (i.e., add,
delete, replace) and therefore has a finer marker granu-
larity. Through comparison, we can analyze the impact of
fine-grained representation on repair capability.
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Fig. 2. Four code representation forms.
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Fig. 3. Extending the LLM to NMT model architecture.

Note that the above four code representations support both
single-hunk and multi-hunk repair scenarios.

4) Code Tokenization: Following previous works [24], [32],
[40], [56], [57], we use a subword-level tokenizer namely byte-
pair encoding (BPE). It replaces frequently occurring sequences
of characters with a single symbol, resulting in a more compact
vocabulary. It can effectively alleviate the OOV problem in
APR [4], [5] and is superior to the word-level tokenizer [24].
Therefore, we follow previous works’ experience [24], [32],
[40], [56], [57] using the BPE tokenization technique.

B. Model Training and Tuning

This step aims to extend LLMs into the NMT model archi-
tecture for fine-tuning. As shown in Fig. 3, we show the model
architectures for the three classes of LLMs when applied to
the NMT task. For encoder-only LLMs, we add decoders to
build the Seq2Seq architecture and fine-tune them in a super-
vised manner. For encoder-decoder LLMs, they are the Seq2Seq
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architecture, so no changes to the structure are needed. For
Decoder-based LLMs, this type of generative model can be
directly applied to sequence prediction and can be applied to
NMT tasks as well. However, for decoder-only LLMs, such
generative models need to concatenate the input and output for
fine-tuning, which weakens the ability of understanding buggy
code semantics due to the length limit. And a recent study [58]
indicates that decoder-only million-level LLMs can perform
significantly worse than the above two kinds of LLMs. Consid-
ering the computing resource constraint, our initial study main
focus on encoder-only and encoder-decoder LLLMs. Nowadays,
as Decoder-only architectures have become the dominant trend
in LLM and PEFT techniques have alleviated the comput-
ing resource constraint, our extended study will mainly focus
on larger scale decoder-only LLMs. After building the NMT
model, multiple training iterations are performed on the training
dataset to enable the model to learn the domain knowledge for
defect repair.

C. Model Evaluation

During model training and tuning, the performance of check-
points after each training round need to be evaluated on the
validation set to find the best trained model (i.e., checkpoint se-
lection). Researchers have proposed various metrics for model
evaluation [59], such as PPL, BLEU, Code BLEU, etc. In previ-
ous APR works based on LLM fine-tuning, Mashhadi et al. [34]
and Huang et al. [60] used the BLEU score to evaluate model
quality in real-time to filter the best repair model, and Jiang et al.
[13] used the PPL score as the evaluation metric. BLEU (i.e.,
Bilingual Evaluation Understudy) [61] is a string-based metric,
is largely adopted in text translation and summarization, which
measures how similar the predicted sequence and the ground
truth are. PPL (i.e., Perplexity) [61] is a reference-less metric,
is a standard evaluation metric in natural language generation
tasks, which quantifies how well a language model predicts
data by evaluating predictive capabilities. However, it is still
unclear how they can affect the selection of the best repair
model. Therefore, we explore them to guide the checkpoint
selection in APR tasks. In our experiments, we used the metrics
PPL and BLEU (which are commonly used in previous works
[13], [34], [60]) to derive the best models, which we call the
best PPL/BLEU model. Besides, we also keep the last round of
checkpoints that is irrelevant evaluation metrics, which we call
the Last model.

D. Patch Generation

In the patch generation phase, we use the repair model ob-
tained in the model evaluation phase to perform patch synthesis.
Generally, we generate multiple candidate patches for an input
bug method, which we call the candidate patch space. Based
on the experience of previous work [13], [14], [31], [38], [39],
[40], [41], [42], [46], [47], we use the beam search strategy to
control the patch generation. We generate a specified number of
candidate patches by adjusting the beam size (or beam width).

E. Patch Post-Processing

The purpose of patch post-processing is to filter and rank the
candidate patches to filter out patches that violate programming
language rules (e.g., syntax error patches) and to push the
most likely correct candidates to the front of the patch queue.
There are many post-processing strategies [4], [5] that have
been born out of APR techniques. Notably, the post-processing
step is independent of the LLM patch generation capability,
and a previous study [16] has explored the impact of the post-
processing step on improving LLMs’ repair results. Therefore,
we exclude the effect of the post-processing strategy on repair
capability. We do not perform any post-processing strategies
during specific experiments.

F. Patch Validation

Patch validation aims to filter out the correct patch from the
candidate patch space. In the benchmark with test cases, we
followed the validation strategy from previous works [17], [31],
[38], [39], [40], [42], [43], [44], [46], [48], [57]. Specifically,
for each bug version, we allocate a maximum of 5 hours for
the validation run, retaining only the first (top-1) plausible
patch candidate that successfully passes all test cases. Then
two authors manually check the plausible patches to determine
whether a plausible patch is correct or incorrect patch. Finally,
the result is correct patches | plausible patches (X/Y). In the
benchmark without test cases, we follow previous works [7],
[24], [32], [33], [56], [62] and use the exact match strategy to
calculate the repair accuracy (Z%).

III. EXPERIMENTAL SETUP

In this section, we describe the experimental details of this
study, which unfolds in four main aspects: 1) The research
questions of this study. 2) LLMs chosen for the study. 3) PEFT
techniques chosen for the study. 4) APR strategies chosen for
the study.

A. Research Questions

In the initial study section, we explore the repair capability
of million-level LLMs in different scenarios by answering the
following research questions in software bug repair, security
vulnerability repair, and programming error repair, respectively:

* RQ1: How do different design choices affect LLMs’
repair capability? RQ1 investigates the impact of dif-
ferent design choices on LLMs’ repair capability, which
can help better compare LLMs and provide guidance on
fine-tuning LLMs. We will explore the impact of code
abstraction, code representation, and checkpoint selection
on the results.

« RQ2: How well does the million-level LLM per-
form compared to the state-of-the-art APR works?
RQ?2 aims to explore the repair capability of million-level
LLMs. We systematically evaluate their performance un-
der multiple defect types, programming languages, and
defect complexities. Further, we compare LLMs to SOTA
APR works to know whether LLMs are superior.
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TABLE I
DETAILS OF THE SELECTED LLMS

Initial Study
Model Size Type Pre-training Dataset

Extended Study

Model Size Type Pre-training Dataset

CodeBERT-base [63] 125M  Encoder-only CodeSearchNet [64] StarCoder(2)-15B [65], [66] 15B Decoder-only ~ The Stack v1.2, The Stack v2
GraphCodeBERT-base [67] 125M  Encoder-only CodeSearchNet [64] CodeLlama-13/34/70B [68], [69], [70] 13/34/70B  Decoder-only ~ Unavailable

PLBART-base [71] 140M  Encoder-Decoder  StackOverflow and BigQuery CodeGen25-7B [72] 7B Decoder-only ~ The Stack v1.2

CodeT5-base [73] 220M  Encoder-Decoder ~ CodeSearchNet [64] and BigQuery CodeGeeX2-6B [74] 6B Decoder-only  Pile, CodeParrot, GitHub
UniXcoder-base [75] 125M  Encoder-Decoder ~ CodeSearchNet [64] InCoder-6B [76] 6B Decoder-only  GitHub & GitLab, StackOverflow

¢ RQ3: What are the factors that limit the effectiveness
of fine-tuning LLMs? RQ3 aims to reveal the shortcom-
ings of LLMs for APR tasks when fine-tuning and point
out some future directions for improvement.

In the extended study section, we explore the repair capabil-
ity of billion-level LLMs by answering the following research
questions:

e RQ4: How well does the billion-level LLM per-
form compared to the state-of-the-art APR works?
RQ4 aims to explore the repair capability of billion-level
LLMs. We systematically evaluate their performance un-
der the basic NMT fine-tuning startegy. Further, we com-
pare LLMs to SOTA APR works to know whether LLMs
are superior.

* RQS5: How do different PEFT options affect LLMs’
repair capability? RQS5 investigates the impact of differ-
ent PEFT techniques and FPFT strategy on LLMs’ repair
capability, which can help us fine-tune billion-level LLMs
with limited memory resources and provide guidance on
choosing appropriate PEFT strategies for LLM4APR re-
search.

¢ RQ6: How well do recent repair strategies work on
the LLM basis? RQ6 aims to reveal the generalization
of various novel repair strategies proposed in recent APR
work in the era of LLMs. This helps us understand the
potential of different repair strategies in enhancing the
repair capability of LLMs and reveals the shortcomings
of previous repair techniques in the era of LLMs.

B. Studied LLMs (LLM4APR)

Considering that program repair is a code-related task, we
focus only on the Large Language Model of Code (or Big Code
Model [77]).

In the initial study, we follow the following criteria for se-
lecting LLMs. First, given that our computing resource (an
RTX 3090 GPU, 24G), which means that the model size is
at the million level. Also, the model parameters of all LLMs
should be of similar size for a fairer comparison of the re-
pair capability. Second, the pre-trained model and its data
should be open-sourced, which allows for fine-tuning models
and analyzing the pre-training data (e.g., data leak). Third,
we do not choose decoder-only million-level models (e.g.,
GPT-C [78] and CodeGPT [79]), as a recent study [58] sug-
gests that such LLMs perform more worse than encoder-only
and encoder-decoder LLLMs on bug fixing tasks. Finally, we
choose 5 models: CodeBERT [80], GraphCodeBERT (GCode-
BERT) [81], PLBART [82], CodeT5 [83], and UniXcoder [84].

In the specific experiments, we use the base model of above 5
million-level LLMs (i.e., CodeBERT-base, GraphCodeBERT-
base, PLBART-base, CodeT5-base, UniXcoder-base) for the
experiments.

In the extend study, we have access to sufficient computing
resources (a TESLA A100 GPU, 80G) and the emergence of
PEFT techniques alleviates the computing resource limitation,
so we focus on billion-level LLMs. For model selection, we
chose Top-5 model families from the Big Code Models Leader-
board [77], i.e., CodeLlama, StarCoder, Flacon, CodeGeeX,
and CodeGen. In particular, considering that Flacon’s model
size is too large (180B), which would be costly for fine-tuning,
we did not choose it for our experiments. In addition, we
also chose InCoder, the powerful LLM in the previous study
[13]. Finally, we choose 5 model families: CodeLlama [85],
StarCoder [86], CodeGeeX [87], CodeGen [88], and InCoder
[89]. Note that billion-level LLMs usually provide variants of
multiple sizes. Considering the fine-tuning cost of billion-level
LLMs, we use StarCoder(2)-15B, CodeLlama-13B/34B/70B in
our experiments. For the remaining 3 LLM families which
are slightly smaller in size, we use their strongest variants
on the Big Code Models Leaderboard, i.e., CodeGeeX2-6B,
CodeGen25-7B, and InCoder-6B.

In summary, we selected 10 LLM families for our experi-
ments. More details of models are shown in Table I.

C. Studied Fine-Tuning Techniques (PEFT4LLM)

In our early initial study, we focused only on million-level
LLMs, which can be fine-tuned and deployed on consumer-
grade GPUs. Today, the size of LLMs has risen to the billion-
level. The traditional paradigm is to fine-tune all of a model’s
parameters for each downstream task, but this is becoming
exceedingly costly and impractical because of the enormous
number of parameters in models today. PEFT techniques [90]
only fine-tune a small number of (extra) model parameters -
significantly decreasing computational and storage costs - while
yielding performance comparable to a fully fine-tuned model
[91]. In our extended study, we added five larger billion-level
LLMs, so we will focus on exploring the impact of PEFT tech-
niques on LLM4APR research, in order to provide guidance on
the selection of PEFT techniques for APR research in the era of
LLMs. In the specific experiments, considering the convenience
and reproducibility of the experiments, we selected the PEFT
methods to be studied from the popular PEFT libraries [91].
The PEFT library provides 3 types of methods, Prompt-based
[92] (e.g., Prompt tuning [93], Prefix tuning [94], P-tuning [95],
etc.), Adapter-based [96] (e.g, LoRA [51], LoHa [97], LoKr
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[98], etc.), and IA3 [99] methods. Given that recent studies
have shown that prompt-based methods do not have advantages
over other types of techniques [100], we will not consider it in
our experiments. Furthermore, given that our experiments are to
be conducted on 5 different model families, we need to ensure
that the chosen PEFT technique can be deployed on all models.
After the initial experimental deployment, we finally choose 3
generalized PEFT techniques (which can be successfully run
on the experimental models in this paper), namely LoRA [51],
AdalLoRA [52], and IA3 [53]. In addition, we also add the FPFT
strategy to compare it with PEFT techniques.

In summary, we selected 4 fine-tuning strategies for our

experiments. More details are shown below.

e FPFT. Full-Parameter Fine-Tuning (FPFT) is a general
paradigm applied to fine-tuning workflows, which tunings
and deploys pre-trained models to various downstream
tasks by adjusting all model parameters. Although tuning
all parameters requires more costs, yet this usually allows
the model to learn and gain the ability to handle specific
downstream tasks better. To the best of our knowledge,
most current fine-tuning based LLM4APR studies [12],
[13], [14], [15] use the FPFT strategy.

* LoRA. Low-Rank Adaptation (LoRA) [51] is a adapter-
based method, which accelerates fine-tuning LLMs while
consuming less memory. It usually adds extra trainable
parameters after the attention and fully-connected layers
of a frozen pre-trained model to reduce memory-usage
and speed up training [91]. To the best of our knowledge,
LoRA is one of the most popular PEFT methods and has
been successfully applied to the fine-tuned implementation
of LLM-based APR tool [26].

* AdaLoRA. Adaptive Low-Rank Adaptation (AdaLoRA)
[52] is an evolutionary variant of LoRA, which manages
the parameter budget introduced from LoRA by allocating
more parameters. Specifically, it will assign higher rank
for important weight matrices that are better adapted
for a task and pruning less important ones [91]. In the
original AdaLLoRA paper [52], it has been experimented on
natural language processing tasks and demonstrated better
results than baselines such as LoRA.

* TA3. TIA3 [53] is also a PEFT technique aimed to im-
prove LoRA by tuning fewer parameters for better per-
formance. Unlike LoRA, which learns low-rank updates
to weight matrices, IA3 scales activations by learned
vectors, attaining stronger performance while only in-
troducing a relatively tiny amount of new parameters. IA3
introduces an even smaller number of trainable parameters
than LoRA. As a result, it is faster, cheaper and more
efficient to fine-tune for a new downstream task [91].

D. Studied Repair Strategies (APR4LLM)

In learning-based APR techniques [12], researchers have
proposed various novel repair strategies that are deployed for
implementation on non-pre-trained or pre-trained models. How-
ever, it is still unclear about the effectiveness of those APR
techniques deployed on non-pre-trained models in the era of

LLM. Therefore, we would like to investigate the potential
of these repair strategies in enhancing the repair capability
of LLMs through further experiments. In the selection of re-
pair strategies, we focus on APR work that is domain-general,
model-independent, and open-science. Based on the above re-
quirements, we selected the 3 novel repair strategies (KATANA
[54], TENURE [49], ITER [45]) from the recent APR living
review [6]. In addition, we also used the basic NMT fine-tuning
strategy as the baseline.

In summary, we selected 4 repair strategies for our experi-

ments. More details are shown below.

* NMT. Back in 2018, Tufano et al. [7] brought the NMT
workflow to bug fixing tasks and it became one of the
common paradigms for later learning-based APR work.
In particular, recent LLM4APR studies [12], [13], [14]
have also followed the NMT fine-tuning paradigm. Ba-
sic NMT fine-tuning typically takes the bug code along
with the context as input, and the output of the model is
the fix code. The model learns the transformation from
bug code to fix code through fine-tuning, which is sim-
ilar to the natural language translation task. Here, we
will use the basic NMT paradigm [7] to explore the ba-
sic repair capabilities of LLMs and to serve as a basic
baseline.

 TENURE. In ICSE 2023, Meng et al.’s work TENURE
[49] combines template-based and learning-based tech-
nical paths. Unlike traditional template-based techniques
[48], [101] that regard the repair process as a two-stage
process (template selection and patch generation), which
plainly use all templates and synthesize patches heuris-
tically, TENURE is a one-stage strategy that allows the
model to predict both templates and patches by construct-
ing an NMT model. The insight behind this is that patch
synthesis can be greatly guided by repair templates to
explore the patch space more efficiently. Similar template-
guided strategies have also been applied to LLM-based
work (e.g, AlphaRepair [17] and GAMMA [30].), which
are not considered in this study given that they employ the
prompt learning paradigm and rely on LLMs to support the
infilling task.

e ITER. In ICSE 2024, Ye et al. [45] propose an iterative
program repair paradigm called ITER founded on the con-
cept of improving partial patches until they become plau-
sible and correct. Specifically, this iterative repair strategy
can backfill previously generated patches into the bug code
and continue iterating on top of the previous patches in or-
der to synthesize patches. In other words, ITER’s novelty is
its ability to optimize in-depth for some patches that have
the potential for successful fixes through multiple itera-
tions, which differs from most APR works that synthesize
all fixes at once [33], [38], [39], [40], [41], [42], [43], [44],
[46], [47], [48], [49], [56], [57]. ITER’s iterative strategy
can further extend the patch space, which may be able to
alleviate the patch space limitation [15] of LLM4APR.

¢ KATANA. Recently, Sintaha et al. [54] introduce the con-
cept of program slicing into the APR domain and present
the repair tool KATANA. An innovation of KATANA is
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TABLE II
DATASETS, BASELINES, AND PARAMETER SETTINGS FOR LLM4APR STUDY. (I.O.: MAX INPUT/OUTPUT LENGTH; L.R.: LEARNING RATE; T.E.: TRAINING
EPOCH; B.W.: BEAM WIDTH; P.N.: PATCH NUMBER)

Repair Task Train Dataset Test Benchmark Defect Hunk o Parameter Setting

LLM4APR Study 5 ook T Dataset | #Bugs | #BFPs | Dafaset | ¥Bugs | ¥BFDs | | Single | Multi 0. [ LR. | TE. | BW. | PN.

Py BFP_S - 52,515 BFP_S - 5,835 Java YES YES Tufano et al. 512 Se-5 30 5 1

BFP_M 58,909 BFP_M 6,546 Java YES YES Tufano et al. 512 Se-5 30 5 1

Bu 2] SeqRD 35,551 SeqRD - 4,707 Java YES - Chen et al. 512 5e-5 30 50 50

Initial Study & ® RecD 143,666 | D4J V1.2 395 560 Java YES Jiang et al. 512 | 5e-5 30 100 10
(Million-level LLMs) RecD - 143,666 | D4J V2.0 444 719 Java YES - Jiang et al. 512 5e-5 30 100 10
[4 CPMD 44,154 | 80,501 D4J V1.2 395 560 Java YES YES | Lietal 512 le-4 30 100 100

Vul. [5]) VulRD - 6,776 VulRD - 1,706 C/C++ YES YES Fu et al. 512 2e-5 75 50 50

Error [€) TFixD 94,300 TFixD - 10,504 | JavaScript YES - Berabi et al. 512 2e-5 30 5 1

Extended Study Bue @ TraD 101,475 | D4I V1.2 395 560 Java YES YES Xia et al. 2048 | Se-5 1 10 10
(Billion-level LLMs) e TraD 101,475 | HEV 163 163 Java YES - Jiang et al. 2048 | 3e-5 1 10 10

in the data pre-processing phase, where it proposes a con-
cept called double slicing to help extract the context of
the buggy code. Specifically, KATANA helps to extract
the contexts that have data dependencies and control de-
pendencies with the bug code to provide sufficient repair
ingredients for guiding bug fixes and to further reduce the
redundancy of contexts. The original implementation of
KATANA worked on GNN, and given its novel design
in the data pre-processing, we believe that KATANA’s
strategy has the same potential for LLMs.

IV. LLM4APR STUDY
A. Study Setup

In the LLM4APR study, we aimed to explore the repair
capabilities of LLMs on APR tasks. In the initial study (Task
@-0), we focus on the repair ability of 5 million-level LLMs
under FPFT strategy, and we conduct experiments on a 24G
RTX 3090 GPU. In the extended study (Task @), we addition-
ally explored the repair ability of 5 billion-level LLMs, and
we conduct experiments on a 80G TESLA A100 GPU. Here,
we use 8-Bit QLoRA [102] technique for billion-level LLMs
to save memory without sacrificing performance. Besides, we
fine-tune only one epoch based on the experience of previous
work [13]. As shown in Table II, we present the details of the
train datasets, test benchmarks, and parameter settings used in
the LLM4APR study. More details are shown below.

e Task @. We use the BFP dataset including the small
and medium versions (BFP_S and BFP_M) provided by
Tufanol et al. [7] for training and testing, and take their
work as baselines.

* Task ®. We use the SequenceR dataset (SeqRD) pro-
vided by Chen et al. [38] for training and testing, and take
their work as baselines.

e Task @. For the single-hunk bug repair, we use the Re-
coder dataset (RecD) provided by Jiang et al. [13] for
model training, and the testing is on Defects4J [50] (D4J)
V1.2 and 2.0.

» Task @. For the multi-hunk bug repair, we use the CPat-
Miner dataset (CPMD) provided by Li et al. [31] for
training, and test them on the Defects4J V1.2. As Li et al.
only provided repair results on Defects4] V1.2, we keep
consistent with them to avoid bias on V2.0.

e Task @®. We use VulRepair by Fu et al. [24] as the
baseline and their VulRepair dataset (VulRD) for model

training and testing, which include Big-Vul [103] and
CVEfixes [104].

* Task ®. We use TFix by Berabi et al. [32] as the baseline
and their publicly available TFix dataset (TFixD) for
training and testing.

e Task @. We use the Transfer dataset (TraD) provided
by Meng et al. [48], [49] as the traing dataset and the
Defects4] V1.2 and HumanEval-Java [13] (HEV) as test
benchmarks. In particular, considering the cost of fine-
tuning billion-level LLMs, we randomly select 100K+
samples from the Transfer dataset. We selected recent
ChatGPT-based APR work [19], [28] as baselines.

B. Empirical Results

1) Initial Study: Table III shows the repair results of 5
million-level LLMs in different repair tasks: 1) In Task @,
we first study the impact of different design choices for bug
repair on the BFP dataset [7] to provide guidance for sub-
sequent experiments. These choices include different code
abstraction strategies (abs/raw), code representation forms
(CRI/CR2/CR3), and model evaluation metrics for selecting
checkpoints (PPL/BLEU/Last). 2) In Task @, we follow the
insights gained from Task @ and use the best combination of the
code representation (CR3) + without code abstraction (raw) to
perform the experiments on the SequenceR dataset [38]. 3) In
Task ©, we evaluate LLMs for single-hunk bugs on Defects4]
V1.2 and V2.0 [50]. 4) In Task @, we evaluate the multi-
hunk bugs on Defects4] V1.2. 5) In Task @, we explore
the vulnerability repair capability of LLMs on the VulRepair
dataset. The repair results using our previously Task @ obtained
best representation (CR3) and VRepair’s representation (CR4)
[33]. 6) In Task ®, we explore the single-hunk error repair
capability of LLMs on the TFix dataset.

2) Extended Study: Table IV shows the repair results of 5
billion-level LLM families in bug repair tasks. Specifically, we
additionally add the recently released CodeLlama-70B [70] and
StarCoder2 [105]. In Task @, we explore the repair capability
of LLMs on the Defects4] V1.2 and HumanEval-Java.

C. Research Questions

1) RQI: How do different design choices affect LLMs’
repair capability?
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TABLE III
REPAIR RESULTS OF MILLION-LEVEL LLMS IN TASK @-®. (X/Y: CORRECT FIXES/PLAUSIBLE FIXES; Z%: REPAIR ACCURACY)
Task | Benckmark | Code Rep.+ Abs CodeBERT GraphCodeBERT PLBART CodeT5 UniXcoder
P [ PPL BLEU Last PPL BLEU TLast PPL BLEU TLast PPL BLEU Tast PPL BLEU Tast
CR1_abs 1294% 1690% 1690% | 1332% 17.55% 17.62% | 17.96%  8.86%  19.40% | 20.15% 21.80% 21.37% | 1947% 18.89%  19.20%
° BEP S CR1_raw 1217%  1630% 17.48% | 14.81% 1726% 17.46% | 1441% 17.86% 17.93% | 19.69% 22.45% 25.18% | 18.44% 23.79% 23.79%
- CR2_raw 31.11%  33.44%  33.52% | 31.65% | | 4327% | 36.71%
CR3_raw | 33.13% | 4271% |
Task | Benckmark | Code Rep.+ Abs CodeBERT GraphCodeBERT PLBART CodeT5 UniXcoder
P [ PPL BLEU Last PPL BLEU TLast PPL BLEU Tast PPL BLEU Tast PPL BLEU Tast
CR1_abs 472%  3.16%  973% | 396%  396% 1036% | 1317% 031%  1317% | 827% 1395% 13.92% | 539%  255%  8.08%
° BEP M CRI1_raw 422%  941%  941% | 527% 1045% 1045% | 4.58%  0.69% 1013% | 872% 16.03% 16.03% | 659%  1138% 11.64%
- CR2_raw 26.11% 23.47% | 35.77% |
CR3_raw | 36.24% |
[ CodeBERT [ GraphCodeBERT [ PLBART [ CodeT5 [ UniXcoder
Task | Benckmark | Code Rep-+ AbS. |—p5pr——RyrG — Lagt PPL  BLEU  Last PPL  BLEU  Last PPL  BLEU  Last PPL  BLEU  Last
) SeqRD CR3_raw 14.40%  14.49% 14.74%  14.53% 13.13%  12.96% 2620%  26.03% 2233%  22.24%
CodeBERT GraphCodeBERT PLBART CodeT5 UniXcoder
Task | Benckmark | Code Rep.+ Abs. | —ppr——prpy a5t PP BLEU  Last PP BLEU  Last PP BLEU  Last PP BLEU  Last
D4J Vi2 CR3_raw 21737 2535 23731 24739 26/35 26/37 12724 16/23 16/23 41753 30/43 30/43 46/63 36/46 38745
® D4J V2.0 CR3_raw 22/38 12126 23/26 23/43 22/38 22/37 23/39 15/27 15/27 30/39 16/26 16/26 37/55 20/33 22/35
D4J V1.2 CR3_raw 6.68%  6.14% 6.86%  7.04% | 4.51% DIOI%N 8.84%  8.84% (UMY 848%  921%
D4J V2.0 CR3_raw 278%  3.20% 4.03%  4.03% |CHRGENN 4.59%  4.59% 6.12%  6.12% 570%  5.84%
CodeBERT GraphCodeBERT PLBART CodeT5 UniXcoder
Task | Benckmark | Code Rep.+ Abs. | —ppr——prpp a5t PP BLEU  Last PP BLEU  Last PP BLEU  Last PP BLEU  Last
° D4J V12 CR3_raw 40/54 34748 31746 41761 39753 39753 32/52 25739 25741 69/95 53777 53777 | 66/102 52776 54782
D4J V1.2 CR3_raw  |[JUENOZN 1047% _ 1083% [IOMNGEN 8.54%  8.84% |JIORSGaN 7.94%  7.76% |GGl 12.64%  12.64% [JSHNgAN 13.36%  14.08%
Tosk | Benckmark | Code Rept Abs CodeBERT i GraphCodeBERT i PLBART i CodeT5 i UniXcoder |
P - [ PPL BLEU Last PPL BLEU TLast PPL BLEU Tast BLEU Tast PPL BLEU Tast
® VIRD CR3_raw 43.96% 4361% 47.30% 52.93% 50.64%
CR4_raw 31.07% 2591%  41.85% 41.97% | 46.19%  53.58% 53.93% | 35.87% _55.86%  5592% | 40.62% | 55.28%  55.63%
CodeBERT I GraphCodeBERT I PLBART CodeT5 I UniXcoder |
Task | Benckmark | Code Rep.+ Abs. —ppr——prpr a5t PP BLEU  Last PP BLEU  Last PP BLEU  Last PP BLEU  Last
(6] TFixD CR3_raw 13.28% 1853% | | 4478% | | 50.44% | | 4825% |
TABLE IV
REPAIR RESULTS OF BILLION-LEVEL LLMS IN TASK @. (X/Y: CORRECT FIXES/PLAUSIBLE FIXES)
Task | Benchmark | Code Rep. + Abs. | InCoder-6B | CodeGeeX-6B | CodeGen25-7B | CodeLlama-13B | StarCoder-15B | StarCoder2-15B | CodeLlama-70B
@ D4J V1.2 CR3_raw 74/93 75/93 87/111 93/112 101/122 95/124 117/140
HEV CR3_raw 78/89 86/94 105/119 118/128 108/121 134/141 124/134

(b) The impact of Code Abs. on the BFP_medium dataset

I
o ——

I
oo T . ——

(a) The impact of Code Abs. on the BFP_small dataset

I
PR ——

o e D% 1% 2% % 2% 06 M A% e S 0% 1% W% 16% 8%

=CRI_raw ®CRI_ abs =CRI_raw ®CRI_ abs

Fig. 4. The impact of Code Abs. on the BFP dataset.

a) Code Abstraction: We first analyze the impact of code
abstraction. From Table III (Task @), we observe that using code
abstraction (CRI_abs) and without code abstraction (CRI_raw)
have a more or less impact on the repair results. To present a
more intuitive picture of the impact of code abstraction, we ex-
tract the Last model repair results for each LLM for comparison
(Last model is irrelevant to evaluation metrics). As shown in
Fig. 4, for most LLMs, the potential impact of code abstraction
on the repair capability may be limited or negligible. For ex-
ample, CodeT5 and UniXcoder achieved the best repair results
using raw code input, while CodeBERT and GraphCodeBERT
have close results on abs and raw. This suggests that raw code is
already adequate, and it is unnecessary to use code abstraction
for LLMs.

There are two main reasons for the phenomenon. First, since
LLMs are usually pre-trained on raw source code, they are
better suited to the same unprocessed raw data for downstream
tasks. Second, as Chen et al. argue, code abstraction may lose

(a) The impact of Code Rep. on the BFP_small dataset (b) The impact of Code Rep. on the BFP_medium dataset

Unixeoder [
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cosentr [ cosentrr [
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CR3raw BCR2raw ®CRI_raw CR3raw BCR2raw BCRI_raw

Fig. 5. The impact of Code Rep. on the BFP dataset.

some semantic information (e.g., special function and variable
names) [38], which makes it difficult to learn fix patterns.

Finding 1: Code abstraction does not significantly improve the
repair capability of most million-level LLMs. Using the data format
without code abstraction processing (i.e., raw source code) is more
suitable for fine-tuning LLMs.

b) Code Representation: In order to investigate the im-
pact of different code representations, we again compare LLMs
with the Last model according to the results from Table III
(Task @). We present the impact of the different CRs on the
repair results in Fig. 5. As shown in Fig. 5, the use of CR2 with
fault location and repair location information outperforms the
repair results of CRI. In addition, we observe that CR3, a repre-
sentation that removes the repair code context information, has
a slightly better repair effect than CR2. Combining these results,
we conclude that CR3 is a more suitable code representation for
the repair task.
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TABLE V
RESULTS OF DIFFERENT DESIGN CHOICES ON TASK ®

Model + Design Choices [

CodeT5 + CR4_raw + LOSS (VulRepair)
CodeT5 + CR4_raw + PPL

CodeT5 + CR4_raw + BLEU

CodeT5 + CR4_raw + Last

CodeT5 + CR4_raw + Ensemble Learning

CodeT5 + CR3_raw + LOSS

CodeT5 + CR3_raw + PPL

CodeT5 + CR3_raw + BLEU

CodeT5 + CR3_raw + Last

CodeT5 + CR3_raw + Ensemble Learning

Repair Accuracy |

44.67%

35.87% (-8.8%)
55.86% (+11.19%)
55.92% (+11.25%)
57.33% (+12.66%)

52.35% (+7.68%)
52.93% (+8.26%)
62.78% (+18.11%)
62.78% (+18.11%)
64.71% (+20.04%)

We now analyze why CR3 can work more effectively on
LLMs. First, using special tokens to mark fault/repair locations
enables the model to focus on code repair behaviors for targeted
learning. Second, LLMs suffer from the long sequence problem
[24]. As the length of the input/output grows, the repair accu-
racy of LLMs decreases. Removing irrelevant context from the
output sequence is equivalent to reducing the output length, so
the model’s repair capability may be improved.

Finding 2: The fine-tuning of million-level LLMs for APR can
be improved by delicate code representations. More accurate fault
location, precise repair location information, and removing the
contextual code of the fixes are all beneficial for improvement.

Besides, in Task ®, we further explore the vulnerability
repair capability of LLMs on the VulRepair dataset. Table III
shows the repair results using our previously obtained best
representation (CR3) and VRepair’s representation (CR4) [33].
We conduct ablation study on CodeT5 used in VulRepair to
explore the impact of different design choices.

As shown in Table V, the repair results using CR3 are all
better than those using CR4. Obviously, CR3 is a more useful
representation. This result again supports our Finding 2. This
is because the two representations differ in the complexity of
marking repair behaviors. As shown in Fig. 2, in CR3, all repair
behaviors are seen as replace operations. In CR4, three distinct
marks are used to represent add, delete, and replace actions,
providing finer token-level fix locations. However, the complex-
ity of this strategy might impede the model in understanding
the different repair actions and accurately implementing fixes
at precise locations. As a result, the model’s repair capabil-
ity could be compromised. In fact, all repair actions can be
simplified to replacement operations (i.e., the fix replaces the
bug location). Although CR3 uses a coarse-grained markup
approach, it simplifies the repair operation, thereby enhancing
the model’s repair capability.

Finding 3: Using finer-grained code representations is not con-
ducive to fully exploiting the repair capability of million-level
LLMs, and CR3 remains the best representation on vulnerability
repair.

c) Checkpoint Selection: We track the impact of different
model evaluation metrics for checkpoint selection on the results
under the best input/output format CR3_raw. In Table III (Task
@ ® @), on the BFP/VulRepair/TFix dataset, the best BLEU
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model and the Last model tend to achieve higher repair accu-
racy than the best PPL model. However, the contrary result is
obtained on the SequenceR dataset and Defects4]J. In Table II1
(Task @-@), the best PPL model achieves the best repair accu-
racy.

This motivates us to explore further. First, we noticed that
in the repair scenario with BLEU as the best metric (Task @
® 0), the train/val/test datasets were obtained from a ran-
dom split on the BFP dataset. Similarly, VulRepair and TFix
datasets are divided by a randomized splitting strategy. Thus the
train/val/test datasets hold similar data characteristics. Second,
we found that in the repair scenarios where PPL was the best
metric (Task @-@), the train/val/test datasets were not split from
the same dataset. For example, on Task @, the training data of
the SequenceR dataset consists of CodRep 1/2/3/5 [106] and
the BFP dataset [7], whereas the test data comes from CodRep
4 [106]. Similarly, on Task ® and Task @, the training data
(Recoder dataset and CPatMiner dataset) do not contain the
software projects from Defects4J. We can conclude that BLEU
aligns better with training data, while PPL shows better gener-
alization. When data characteristics are alike, BLEU is better;
otherwise, PPL is preferred. However, it is hard to know the
difference between the training and testing samples in practice.
Therefore, we follow the practice of previous works [18], [39]
to use the ensemble strategy by combining multiple checkpoints
(PPL/BLEU/Last) to enhance the repair capability.

Finding 4: Different repair scenarios may have different best
evaluation metrics for checkpoint selection. In practice, using
ensemble learning is an appropriate strategy.

2) RQ2 & 4: How well does the million & billion-
level LLM perform compared to the state-of-the-art ap-
proaches?

a) Repair Result: Based on findings obtained from RQ1,
we use the CR3_raw and the ensemble strategy to obtain the
best performance of million-level LLMs and compare them
with baselines. Besides, we also use CR3_raw and the basic
NMT fine-tuning strategy to compare billion-level LLMs with
recent APR works.

Task @. As shown in Table VI, on the BFP dataset,
LLMs improve over the baseline Tufano et al. [7] as follows:
1) BFP_S: CodeT5 (+43.82%) > UniXcoder (+41.16%) >
GraphCodeBERT (+34.12%) > PLBART (+33.30%) > Code-
BERT (+26.27%). 2) BFP_M: CodeT5 (+43.88%) > UniX-
coder (+42.65%) > GraphCodeBERT (+34.43%) > CodeBERT
(+34.13%) > PLBART (+32.98%).

Task . As shown in Table VII, on the SequenceR dataset, all
LLMSs’ results outperform SequenceR [38]: CodeT5 (+17.93%)
> UniXcoder (+16.45%) > GraphCodeBERT (+2.28%) >
CodeBERT (+1.74%) > PLBART (+0.13%).

Task ®. As shown in Table VIII, our best results on De-
fects4J outperform previous APR tools [40], [41], [44], [46]
and the recent study [13]. On Defects4] V1.2 and V2.0, our
CodeT5-base and PLBART-base fixed 35 and 2 more bugs
than Jiang et al. [13] when using the same model fine-tuning.
Notably, our small-scale LLMs UniXcoder/CodeT5 outperform
large-scale LLM InCoder-6B used by Jiang et al. Compared to
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TABLE VI
BEST REPAIR RESULTS FOR LLMS ON TASK @

Benchmark CodeBERT GCodeBERT PLBART CodeT5 UniXcoder Tufano et al. [7]
BFP_S 36.59% 44.44% 43.62% 54.14% 51.48% 10.32%
BFP_M 37.74% 38.04% 36.59% 47.49% 46.26% 3.61%
TABLE VII
BEST REPAIR RESULTS FOR LLMS ON TASK @
Benchmark CodeBERT GCodeBERT PLBART CodeT5 UniXcoder SequenceR [38]
SeqRD 21.92% 22.46% 20.31% 38.11% 36.63% 20.18%
TABLE VIII
BEST REPAIR RESULTS FOR LLMS ON TASK ©
Our Work Baseline (Jiang et al. [13])
Benchmark | CodeBERT GCodeBERT PLBART CodeT5  UniXcoder | PLBART  CodeT5 CodeGen InCoder DL-based APR Tool
base base base base base base base 350M 2B 6B 1B 6B CURE Reward Recoder KNOD
D4J V1.2 33/47 34/47 16/31 49/62 57/71 25/- 30/- 23/- 32/- 38/- 27/- 41/- 6/- 20/- 24/- 20/-
D4J V2.0 25/44 28/48 24/41 33/45 46/67 13/- 17/- 20/- 23/- 23/~ 24/- 28/- 6/- 8/- 11/- 13/-
TABLE IX
BEST REPAIR RESULTS FOR LLMS ON TASK @
Bug T Our Work Baseline (Li et al. [31])
ug ype CodeBERT ~ GCodeBERT ~ PLBART  CodeT5  UniXcoder | DEAR CURE  CoCoNut  DLFix
1. One-Hunk of One-Stmt 21727 24/31 16/25 42/54 42/52 33/- 38/- 37/- 35/-
2. One-Hunk of Multi-Stmts 8/10 7/11 7/9 11/14 11/16 4/- 3/- 3/- 1/-
3. Multi-Hunks of One-Stmt 10/11 9/14 9/13 12/16 11/18 13/- 6/- 3/- 4/-
4. Multi-Hunks of Multi-Stmts 6/6 4/5 4/4 5/5 6/8 1/- 0/- 0/- 0/-
5. Multi-Hunks of Mix-Stmts 718 3/6 3/7 oy 8/22 2/- 1/- 1/- 0/-
Total \ 52/62 47/67 39/58 77/106 78/117 \ 53/- 48/- 44/- 40/-

their best model InCoder-6B, our results are as follows: 1) De-
fects4] V1.2: UniXcoder (+16) > CodeT5 (+8) > GraphCode-
BERT (-7) > CodeBERT (-8) > PLBART (-25). 2) Defects4]J
V2.0: UniXcoder (+18) > CodeT5 (+5) > GraphCodeBERT
(+0) > CodeBERT (-3) > PLBART (-4).

Task @. As shown in Table IX, our best repair results on
Defects4] V1.2 outperform existing works [31], [39], [40], [42].
LLMs improve over the best multi-hunk APR tool DEAR [31]
as follows: UniXcoder (+25) > CodeT5 (+24) > CodeBERT
(-1) > GraphCodeBERT (-6) > PLBART (-14).

Task ®. As shown in Table X, on the VulRepair dataset, all
LLMs outperform VulRepair [24] and VRepair [33]. In par-
ticular, LLMs improve over the best baseline VulRepair [24]
as follows: CodeT5 (+20.04%) > UniXcoder (+19.10%) >
PLBART (+16.23%) > GraphCodeBERT (+9.49%) > Code-
BERT (+7.50%).

Task ®. As shown in Table XI, on the TFix dataset, LLMs
improve over the best baseline TFix [32] (T5-large) as follows:
CodeT5 (+11.32%) > UniXcoder (+10.80%) > CodeBERT
(+8.12%) > GraphCodeBERT (+7.15%) > PLBART (+3.98%).

Task @. In this task, we fine-tuned five million-level LLMs
to evaluate and compare their repair performance with that
of billion-level models. As presented in Table XII, the larger

billion-level LLMs demonstrate significantly superior repair
capabilities compared to the million-level models. Besides,
fine-tuned billion-level LLMs using smaller patch spaces (10
patches) rival or even surpass recent ChatGPT-based APR work
[19], [28]. On the Defects4] V1.2, CodeLlama-70B fixed 3
more bugs than ChatRepair. [19]. On the HumanEval-Java,
StarCoder2-15B fixed 134 bugs, which is close to the results
of the best baseline ContrastRepair [28]. Notably, we use far
less patch space than these ChatGPT-based baseline works.
This suggests that LLMs can use fewer candidate patches after
fine-tuning comparable to APR tools based on ChatGPT in the
prompt paradigm. Compared to the best baseline, our results
are as follows: 1) Defects4] V1.2: CodeLlama-70B (+3) >
StarCoder-15B (-13) > StarCoder2-15B (-19) > CodeLlama-
13B (-19) > CodeGen25-7B (-26) > CodeGeeX2-6B (-39) >
InCoder-6B (-40). 2) HumanEval-Java: StarCoder2-15B (-3) >
CodeLlama-70B (-13) > CodeLlama-13B (-19) > StarCoder-
15B (-29) > CodeGen25-7B (-32) > CodeGeeX2-6B (-51) >
InCoder-6B (-59).

According to the results from Task @-®, we find that us-
ing the million-level LLMs UniXcoder and CodeT5 has sur-
passed previous works on bug/vulnerability/error repair tasks.
This demonstrates that fine-tuning million-level LLMs has great
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TABLE X
BEST REPAIR RESULTS FOR LLMS ON TASK ®

Benchmark CodeBERT GCodeBERT PLBART CodeT5 UniXcoder VulRepair [24] VRepair [33]
VulRD 52.17% 54.16% 60.90% 64.71% 63.77% 44.67% 23.00%
TABLE XI
BEST REPAIR RESULTS FOR LLMS ON TASK ®
Benchmark CodeBERT GraphCode PLBART CodeT5 UniXcoder TFix [32] CoCoNuT [39] SequenceR [38]
TFixD 57.42% 56.45% 53.28% 60.62% 60.10% 49.30% 11.70% 17.90%
TABLE XII

REPAIR RESULTS FOR LLMS ON TASK @

Million-Level LLMs
CodeBERT  GCodeBERT PLBART  UniXcoder
10 10 10 10
10 10 10 10

LLM

Beam Size
Patch Size

CodeT5
10 10

10 10 10

InCoder-6B  CodeGeeX2-6B  CodeGen25-7B

Baseline [19], [28]
ContrastRepair  ChatRepair

Billion-Level LLMs
CodeLlama-13B  StarCoder-15B
10 10
10 10

StarCoder2-15B  CodeLlama-70B

10 10 10 120 500

12/14
1923
14/19
2429
4/5
213

10/12 11/14
20/24 22/29
12/17 13/19
18/23 21/24
415 4/4
33 33

3/5 1/4 6/8 913
11/14 59 13/16 18/22
710 518 5/10 12/16
9/14 6/7 13/16 17121

212 23 3/3 415

171 0/1 22 22

Chat
Closure
Lang
Math
Mockito
Time

15/-
37/
21/-
32/-
6/-
3/-

12/-
32/-
19/-
30/-
8/-
2/-

12/15
34/43
25/31
33/39
1
415

12/14 12/15
27/32 34/37
19725 16/23
29/32 3036
515 6/7
3/4 3/4

12/16
28/34
15/25
32/41
5/5
33

11/14
26/30
15/23
28/35
516
33

74193
78/89

75193
86/94

42/55
21/28

62/79
42147

33/46
14/18

19/32

D4J V1.2
718

67/84
HEV

50/60

103/-
137/151

114/-

101/122 -
130/143

108/121

95/124
134/141

88/111
105/119

95/112

117/140
118/128

124/134

potential for APR research. In addition, in Task @, larger-
scale billion-level LLMs have better repair capabilities than
smaller-scale million-level LLMs, and large-scale models such
as CodeLlama-70B and StarCoder2-15B rival or even surpass
recent ChatGPT-based work in terms of repair capabilities.

Finding 5: Million-level LLMs showcase competitive repair ca-
pabilities in APR. Billion-level LLMs, with their larger scale,
generally exhibit even stronger repair capabilities. Notably, fine-
tuned open source billion-level LLMs achieve repair performance
comparable to recent ChatGPT-based APR approaches.

b) Multi-Hunk: We also pay close attention to multi-hunk
bug fix, since little research has been done on the repair of
complex bugs. As mentioned earlier, we use CR3 to extend the
NMT workflow to multi-hunk repair scenarios.

Task @. The results are provided in Table IX. Obviously,
compared to single-line bugs (Type 1), single-hunk (Type 2)
and multi-hunk bugs (Type 3-5) are far more difficult to repair.
This is because such bugs entail intricate dependencies from
both inner and outer of one buggy method. Nonetheless, our
work achieves a great improvement over existing approaches on
fixing such complex bugs. In particular, UniXcoder and CodeT5
outperform the advanced multi-hunk APR tool DEAR and fixed
9 and 8 more multi-hunk bugs. Furthermore, to our surprise,
there is little gap between the number of fixed single-hunk bugs
and the number of multi-hunk bugs. We hope such results can
encourage researchers to explore more advanced approaches for
repairing complex bugs, as they are more common in real-world
projects.

Finding 6: Fine-tuning million-level LLMs to fix multi-hunk bugs
is also promising, though it is more difficult compared with single-
line bug repair.

Task ®. We also study the repair capability of LLMs for
different vulnerability hunks. As shown in Table XIV, LLMs
have the highest repair accuracy in single-hunk fixes. In the
multi-hunk fixing scenario, when the number of hunks is not
big (i.e., < 5), the accuracy is not significantly behind that
of the single-hunk fixes. However, as the vulnerable hunks
increase, the repair accuracy of LLMs drops sharply. To sum
up, although we can obtain a fairly good results for repairing
complex vulnerabilities, there is still a long way to go for overly
complex ones.

Finding 7: The fine-tuned million-level LLMs show great potential
for vulnerability repair. They can also deal with multi-hunk vul-
nerabilities to some extent unless the hunks are too many.

Task @. Our extended study also investigates the perfor-
mance of billion-level LLMs in repairing multi-hunk bugs.
Following the methodology of the recent multi-hunk repair
work, ITER [45], we selected 33 multi-hunk bugs to evaluate
the repair capabilities of the models. As shown in Table XIII,
billion-level LLMs generally fix more multi-hunk bugs than
million-level LLMs, highlighting their advantages in handling
complex repair scenarios. Notably, the best billion-level model,
StarCoder2 (14 correct fixes), performs comparably to ITER
[45] (15 correct fixes) and surpasses the ChatGPT-based Re-
pairAgent [29] (8 correct fixes). Since ITER does not rely on
perfect fault localization, we reference it here to illustrate the
potential of billion-level LLMs in multi-hunk repair scenarios,
rather than as a basis for direct comparison.

Finding 8: Billion-level LLMs also show promise in multi-hunk
repair scenarios, with larger-scale models offering significant ad-
vantages over smaller-scale million-level LLMs when addressing
complex multi-hunk repairs.
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TABLE XIII
MULTI-HUNK REPAIR RESULTS (33 MULTI-HUNK BUGS IN DEFECTS4J V1.2) FOR LLMS ON TASK @

Multi-hunk Bugs Million-level LLMs Billion-level LLMs Baseline [19], [28], [29], [45]
BugID  Edis Co?gil:RT GC(jz}i’ZzieERT PI:E::?T Unjﬁoeder C(;Si’]e-s Ini’(;ler cmf;;exz Cod;GBenZS Cot%elglgama Slc{rg%der Slafsngerz Codj{)‘:aama ITER RepairAgent ChatRepair ContrastRepair
Chart-14 4 v v v v v v v v v v v
Chart-16 3 v v v v v v v v
Closure-4 2 v
Closure-78 2 v v v v v v
Closure-79 2 v v v
Closure-106 2
Closure-109 2
Closure-115 2 v v v v v v v v v v v v v
Closure-131 2 v
Lang-7 2
Lang-27 2 v v v
Lang-34 2 v v v v v v v v v v v
Lang-35 2 v
Lang-41 4
Lang-47 2 v v v v v v v v v v v
Lang-60 2 v v v v v v
Math-1 2 v
Math-4 2 v v v v v v v v v v v v
Math-22 2 v v v v v v v v v v v v v
Math-24 2
Math-35 2 v v v v v
Math-43 3 v
Math-46 2 v v
Math-62 3
Math-65 2 v
Math-71 2
Math-77 2 v v v v v v v v v v v v
Math-79 2 v v v v v v v v v v v v v v
Math-88 3
Math-90 2
Math-93 4
Math-98 2 v v v v v v v v v
Math-99 2 v
#Total(33 bugs) | 7 3 6 10 8 | 11 11 12 11 13 14 2|15 8 3 3
TABLE XIV // fix no-undef Undefined variable.
PERFORMANCE OF LLMS WITH VULNERABILITY HUNKS NL.triggerMapMoveEnd();
- NL.respondLast2@@(NL.json.MapWmsLayers.records.regular);
Vul. #Hunks CodeBERT GCodeBERT PLBART CodeT5 UniXcoder + NL. respond Last200 ( fx. r‘egula I") ;
1 60% 63%
var 1 rs = NL.vw.MAP. WmsL r 5
2 53% 55% 60% 64% 63% ar _layers gethimsLayers();
3 56% 57% 62% 66% 65%
4 40% 2% 51% 54% 58% . .
5 25% 27% 31% 31% 33% Fig. 6.  An error-fix example of no-undef.
6 24% 24% 24% 27% 24%
7 17% 17% 22% 22% 17%
8 13% 13% 13% 13% 13%
9 7% 7% 7% 7% 7%
10+ 5% 5% 5% 5% 5%

¢) Data Leakage: Prior work AlphaRepair [17] un-
covered the data leak issue when using LLMs for APR,
that is, the overlap between the pre-training data (CSN,
i.e.,CodeSearchNet) and the test benchmark (D4J, i.e., De-
fects4]). To reveal its impact, we follow AlphaRepair to an-
alyze the LLMs’ repair results with respect to the data leak.
We searched for the exact match and identified 48 overlaps
between D4J IDs and CSN. Then we checked if the patches
generated by LLMs were identical to those present in D4J.
In Task ®, among the 48 patches, only Lang_43, Math_22, and
Mockito_5 were identified, and a similar pattern was observed
in Task @. The results imply that fine-tuned LLMs are mini-
mally affected by data leakage. However, this also means that
million-level LLMs may tend to lose certain pre-trained knowl-
edge during the fine-tuning process, highlighting the presence
of the catastrophic forgetting problem [107], [108] during this
phase. Besides, we observe catastrophic forgetting in billion-
level models as well. For example, in a previous study [13],
there were 25 HumanEval bugs that could be directly fixed by
CodeGen-6B, yet the fine-tuned CodeGen-6B fixes failed.

Finding 9: The LLM is minimally affected by data leakage
after sufficient fine-tuning. However, this exposes the catastrophic
forgetting problem of LLMs under the fine-tuning paradigm.

3) RQO3: What are the factors that limit the effectiveness
of fine-tuning LLMs?

a) Lack of Repair Ingredients: One of the factors is
the method-level BFPs and the limited input/output length.
When using method-level BFPs, it is difficult for the model
to synthesize correct patches based on the incomplete context
if repair ingredients (e.g., method names, variable names, etc.)
are outside of that method. In particular, we note that the TFix
dataset only records two lines of code before and after the
error line as context, and such limited contextual information
is not sufficient. Taking the no-undef error type as an example
(see Fig. 6), we observe that fixing this error requires sufficient
context to substitute the undefined variable with the defined one.
However, the TFix dataset solely furnishes context from the line
preceding and following the error location. As a result, it might
lack the essential repair components, potentially resulting in
an incorrect patch. Besides, if a method exceeds the maximum
input/output length, it is difficult to provide a complete method
for the model. This may result in a lack of necessary contextual
information to guide the repair.

Finding 10: Method-level BFPs and the limited model input/output
lengths may miss the necessary contextual information to guide the
repair, thus limiting the repair capability of LLMs.

b) Computing Resource and Model Size: The lack of
computing resources and the overly-large model size can hinder
LLMs from generating more candidate patches. For example,
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TABLE XV
THE % PERFECT PREDICTIONS OF LLMS FOR ALL CWES ON THE VULREPAIR DATASET

VulRepair Dataset Repair Accuracy VulRepair Dataset Repair Accuracy
No. %‘;’:;E oJrain - Test | CoGeBERT  GCodeBERT ~PLBART UniXcoder CodeTS || No. (;;:;f S;r;:’l;;‘cs SaTnf;tlcs CodeBERT ~ GCodeBERT ~PLBART  UniXcoder CodeTS
T CWE-1I9 1390 3 37% 39% 53% 55% 56% 50 CWE-732 8 0 0% 0% 0% 0% 0%
2 CWE-125 606 166 49% 50% 52% 54% 55% 51 CWE79 7 1 100% 100% 100% 100% 100%
3 CWE20 458 136 60% 60% 68% 70% 1% 52 CWE-522 7 1 0% 0% 0% 0% 0%
4 CWE000 412 105 60% 59% 65% 67% 67% 53 CWE-191 7 2 50% 50% 50% 50% 50%
5 CWE476 254 67 63% 64% 61% 66% 66% 54 CWE-770 6 1 0% 0% 0% 0% 0%
6 CWE200 253 59 73% 73% 76% 76% 76% 55  CWE-704 5 2 0% 0% 0% 0% 0%
7 CWE264 250 68 72% 75% 76% 75% 76% 56  CWE-665 5 4 75% 75% 75% 75% 75%
8 CWE399 216 53 64% 68% 75% 74% 70% 57 CWE-89 5 4 75% 75% 100% 100% 100%
9 CWE362 197 58 47% 48% 53% 59% 66% 58 CWE-129 4 4 25% 25% 25% 75% 75%
10 CWE787 188 62 2% 2% 44% 47% 48% 50 CWE-862 4 1 0% 0% 0% 0% 0%
11 CWE-190 179 61 46% 44% 54% 56% 64% 60 CWE-354 4 2 50% 50% 50% 50% 50%
12 CWE416 175 64 59% 59% 62% 67% 64% 61 CWE-755 4 2 50% 50% 50% 50% 50%
13 CWEI89 158 38 66% 66% 71% 71% 71% 62 CWE-90 4 0 0% 0% 0% 0% 0%
14 CWE400 103 37 62% 68% 76% 76% 76% 63 CWE-255 4 2 50% 50% 50% 50% 50%
15 CWE284 102 35 40% 49% 71% 74% 71% 64 CWE-426 4 1 100% 100% 100% 100% 100%
16  CWE-59 65 11 64% 64% 64% 64% 64% 65 CWE-824 4 0 0% 0% 0% 0% 0%
17 CWES310 52 17 76% 76% 76% 76% 76% 66 CWE-667 4 3 33% 33% 33% 67% 67%
18 CWE-401 50 12 8% 33% 50% 33% 58% 67 CWE-=863 4 2 50% 50% 50% 50% 50%
19 CWE-835 48 10 70% 70% 80% 80% 80% 68 CWE-172 3 0 0% 0% 0% 0% 0%
20 CWE415 46 17 65% 65% 65% 65% 65% 69 CWE273 3 0 0% 0% 0% 0% 0%
21 CWE772 45 10 80% 80% 80% 80% 80% 70 CWE-754 3 0 0% 0% 0% 0% 0%
22 CWE-6l17 43 21 57% 57% 57% 62% 62% 71 CWE-94 3 0 0% 0% 0% 0% 0%
23 CWE-19 42 10 60% 60% 60% 60% 60% 72 CWE-601 3 1 0% 0% 0% 0% 0%
24 CWE-269 38 14 86% 86% 86% 86% 86% 73 CWE-532 3 0 0% 0% 0% 0% 0%
25 CWE-17 37 8 88% 88% 88% 88% 88% 74 CWE-347 3 2 50% 50% 100% 100% 100%
26 CWE-120 35 10 20% 20% 20% 30% 40% 75 CWE-345 2 1 0% 0% 0% 0% 0%
27 CWE-285 2 5 40% 40% 40% 40% 40% 76 CWE-358 2 3 67% 67% 67% 67% 67%
28 CWE-369 24 8 50% 50% 50% 50% 50% 77 CWE-276 2 0 0% 0% 0% 0% 0%
29 CWE-254 23 4 50% 50% 75% 75% 75% 78 CWE-327 2 0 0% 0% 0% 0% 0%
30 CWE22 23 6 50% 50% 50% 50% 50% 79 CWE-1187 2 0 0% 0% 0% 0% 0%
31 CWE-295 23 6 17% 17% 17% 17% 17% 80 CWE-494 2 1 0% 0% 0% 0% 0%
32 CWET8 2 4 25% 25% 25% 25% 25% 81 CWE-346 2 0 0% 0% 0% 0% 0%
33 CWE-404 2 9 78% 78% 78% 78% 89% 82 CWE-682 2 1 100% 100% 100% 100% 100%
34 CWE-674 21 6 0% 0% 17% 33% 17% 83 CWE-9I8 2 1 0% 0% 0% 0% 0%
35 CWE-552 19 4 25% 25% 25% 25% 50% 84 CWE-320 1 1 100% 100% 100% 100% 100%
36 CWE-834 15 6 33% 33% 33% 50% 33% 85 CWE-681 1 0 0% 0% 0% 0% 0%
37 CWE-287 15 4 75% 75% 75% 75% 75% 86 CWE-203 1 0 0% 0% 0% 0% 0%
38 CWE74 15 3 67% 33% 33% 33% 67% 87 CWE-193 1 0 0% 0% 0% 0% 0%
39 CWE-908 13 2 100% 100% 100% 100% 100% 88 CWE-16 1 0 0% 0% 0% 0% 0%
40 CWE-326 12 3 100% 100% 100% 100% 100% 89 CWE-290 1 1 100% 100% 100% 100% 100%
41 CWE-134 10 2 50% 50% 50% 50% 50% 90  CWE-639 1 0 0% 0% 0% 0% 0%
42 CWE252 10 1 0% 0% 0% 0% 0% 91  CWE319 1 0 0% 0% 0% 0% 0%
43 CWE-436 9 2 100% 100% 100% 100% 100% 92 CWE-88 1 1 100% 100% 100% 100% 100%
4 CWET7 9 4 75% 75% 75% 75% 75% 93 CWE-668 1 0 0% 0% 0% 0% 0%
45 CWE-6l1 9 2 0% 0% 0% 50% 0% 94 CWE-672 1 0 0% 0% 0% 0% 0%
46 CWE-444 9 1 0% 0% 0% 0% 0% 95  CWE-502 1 0 0% 0% 0% 0% 0%
47 CWE-388 9 0 0% 0% 0% 0% 0% 96 CWE-434 1 0 0% 0% 0% 0% 0%
48 CWE763 8 4 25% 25% 25% 25% 25% 97 CWE-18 1 0 0% 0% 0% 0% 0%
49  CWE352 8 1 0% 0% 0% 0% 0% 98 CWE-706 0 1 0% 0% 0% 0% 0%

when we use 5 million-level LLMs to perform patch synthesis
on Defects4J, we can only go up to a max beam size of 200 and
generate 200 patches for each bug in a RTX 3090 GPU. Fur-
thermore, we only set the max beam size is 10 for CodeL.lama-
70B in a TESLA A100 GPU. Unlike traditional deep learning
(DL) models [39], [40], [41], [49], it is non-trivial to use a
larger beam size and produce a larger patch space. Previous
studies [7], [24] have confirmed that the size of patch space
positively impacts the overall performance of DL models for
APR. Therefore, such a limitation makes it difficult for further
improvement. On the other hand, we find that larger model sizes
bring better repair capabilities while also tend to take more
memory cost and time cost. Briefly, when implementing fine-
tuning and inference for larger-scale billion-level models, more
memory resources tend to be required and longer training and
inference times are needed.

¢) Long-tailed Class Imbalance: Table XV presents the
results of the million-level LLM’s repair capabilities across
various CWE types. It is important to note that the distribution
of training samples is highly imbalanced across CWE types, as
illustrated in Fig. 7. Specifically, while the training set includes
97 CWE types (No. 1-97), a significant portion of these, namely
55 types (No. 43-97) have fewer than 10 training samples.
This long-tailed class imbalance [109] may restrict the model’s
ability to perform effectively on few-shot types, as the limited
training data for these categories poses inherent challenges to
achieving robust performance.

Finding 11: Addressing small sample sizes and class imbalance
constitutes a primary challenge in vulnerability repair.

d) Long Sequence: We examine how the repair capability
of LLMs is influenced by the input and output lengths. From
Table XVI, we observe that LLMs suffer from the long se-
quence problem, i.e., as the length of input/output sequences
increases, the repair capability of the model decreases. Even
many studies [7], [24], [38] have highlighted the long sequence
problem, alleviating this problem remains the way forward.

Finding 12: The repair capability of LLMs suffers from the long
sequence problem in general.

V. PEFT4LLM STUDY

A. Study Setup

The LLM4APR research is constrained by computing re-
sources and model size, with the emergence of billion-
parameter models posing a significant challenge. Therefore,
it is crucial to investigate the impact of Parameter-Efficient
Fine-Tuning techniques. This study aims to explore how
PEFT techniques affect the repair capabilities of large-scale
LLMs. The goal is to provide guidance on selecting ap-
propriate PEFT strategies for LLM4APR studies, especially
in resource-constrained scenarios. Specifically, we investigate
the repair ability of the 5 billion-level LLMs (InCoder-6B,
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Fig. 7. Distribution of Long-tailed VulRepair dataset.

TABLE XVI
IMPACT OF INPUT/OUTPUT LENGTHS ON LLMS FOR VULNERABILITY REPAIR

Input Length
CodeBERT 0-100 T01-200  201-300 ___301-400 __ 401-500 500+
= 0-10 69% 65% 65% 63%
g 1120 53% 60% 57% 52%
= 21-30 46% 57% 65% 57% 50% 65%
H 31-40 44% 61% 67% 41% 59% 72%
£ 41-50 37% 59% 39% 50% 58% 44%
S 50+ 29% 28% 2% 27% 14% 24%
GCodeBERT Input Length
= 0-10
g 11-20
= 21-30 49% 59% 65% 57% 50% 67%
E 31-40 52% 61% 68% 53% 59%
£ 41-50 37% 59% 39% 50% 58% 50%
S 50+ 32% 28% 33% 29% 18% 25%
PLBART Input Length
= 0-10
g 11-20
= 21-30 57%
E 31-40 63% 70% 71% 53% 59% 70%
£ 41-50 63% 74% 39% 50% 58% 50%
S 50+ 54% 35% 41% 27% 18% 27%
Input Length
CodeTs 0-100 101200 201300 301400 401-500 500+
g 0-10 81% 2% 72%
B 1120 81% 70% | 8% 15% 61%
S 2130 | 8%  81% 73% 71% 50% 68%
E 31-40 63% 76% 79% 60% 59% 68%
£ 41-50 63% 74% 50% 70% 58% 58%
S 50+ 57% 37% 42% 29% 21% 21%
UniXcoder Input Length
= 0-10
g 11-20
= 21-30
H 31-40
£ 41-50
=) 50+

CodeGeeX2-6B, CodeGen25-7B, StarCoder-15B, CodelLlama-
34B) under 4 PEFT strategies (LoRA, AdalLoRA, IA3, FPFT)
on the Transfer dataset. Considering the huge cost of model
fine-tuning, we only randomly select approximately 45k
data from the Transfer dataset for fine-tuning and testing
(train/val/test=45508/948/949), and we use 8-Bit Quantization
to load LLMs. As shown in Table X VII, we present the specific
parameter settings for the PEFT4LLM study. These settings
are based on previous research and our initial experiments to
achieve optimal performance for large-scale LLM:s.

B. Empirical Results

Table XVIII-XX show the repair results, memory cost, and
time cost of 5 billion-level LLMs under 4 fine-tuning straties.

C. Research Questions

1) RQ5: How do different PEFT options affect LLMs’
repair capability?

a) Repair Results: As shown in Table X VIII, we explore
the impact of different fine-tuning strategies on the repair effec-
tiveness of LLMs to provide guidance for maximizing the repair
capability of LLMs. Specifically, LoRA techniques excel in
maximizing repair capabilities, outperforming even full param-
eter fine-tuning. Interestingly, some advanced techniques, such
as AdaLLoRA and IA3, which claim to be improvements over
LoRA, performed worse in the LLM4APR study. Overall, fine-
tuning large-scale billion-parameter LLMs using LoRA proves
to be the best option for maximizing repair capabilities.

Finding 13: In maximizing the repair capability of LLMs, LoRA
is superior to FPFT as well as AdaLoRA and IA3.

b) Memory Cost: As shown in Table XIX, we present
the memory cost when using different fine-tuning strategies for
LLMs. Specifically, PEFT techniques (LoRA, AdaLoRA, IA3)
save almost half of the memory compared to full parameter
fine tuning. In particular, IA3 has the lowest memory cost due
to involving fewer fine-tuned parameters, which is consistent
with what its paper claims. Overall, PEFT techniques offer sig-
nificant advantages in reducing memory costs for fine-tuning,
with TA3 being especially beneficial due to its lower memory
requirements.

Finding 14: In saving the memory cost required for fine-tuning
LLMs, PEFT techniques have a significant advantage, and IA3
maintains the lowest memory cost.

c) Time Cost: As shown in Table XX, we present the
time costs associated with different fine-tuning strategies for
LLMs. We analyzed the average time taken to process one
BFP during LLM fine-tuning. Notably, PEFT techniques incur
significantly higher time costs compared to full-parameter fine-
tuning. This indicates that while PEFT techniques offer good
repair capabilities and lower memory costs, they do so at the
expense of increased time costs. Among PEFT techniques, IA3
maintains the lowest time cost, consistent with the claims made
in its paper.

Finding 15: In saving the time cost required for fine-tuning LLMs,
FPFT has a significant advantage, and IA3 is one of the PEFT
techniques with the lowest time cost.
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TABLE XVII
PARAMETER SETTINGS FOR PEFT4LLM STUDY. (LR: LORA_R; LA: LORA_ALPHA; LD: LORA_DROPOUT; IR: INIT_R; TR: TARGET_R; B1: BETAL; B2;

BETA2; DT: DELTAT; 1.0.: MAX INPUT/OUTPUT LENGTH; L.R.:

LEARNING RATE; T.E.: TRAINING EPOCH; B.W.: BEAM WIDTH; P.N.: PATCH NUMBER)

LoRA AdaLoRA

LLM

TA3 FPFT General Parameter Setting

LR. [ LR [ LA [ LD Target_modules LR. [IR [ TR | BI | B2 [ DT [ LA [ LD Targel_modules LR. Target_modules Teedforward_modules | LR. | L.O. [ TE. | BW. [ PN,
TnCoder- ) TK_proj". "v_proj". "q_proj’- - [K_proj”. "v_proj", "q_proj'- TK_proj”, "V_proj’, "qproj"s | v 1w weow
o ted | 16 | 32 | 005 | P R o led | 12| 8 | oss | 085 | 10 | 32| o0s | oPG R b 1e3 | ot e e ["fel”, "fe2") Se5 | 2048 | 1 1 1
C“‘“g:exz' Se-5 | 16 | 32 | 0.05 | default le3 [ 12| 8 | 085|085 | 10 | 32 | 005 | ["query_key_value"] le-3 'nc"]“;geﬁgj;‘i':)‘th ["mlp.dense_4h_to_h"] | Se-6 | 2048 | 1 1 1
CodeGenS- | ses | 16 | 32 | 005 | defaurc ses [ 12] 8 |oss|oss| 10| 32 | 005 | defaule Se-5 | default default Ses | 2048 | 1 1 1
CodeLtama- | s 5 | 16 | 32 | os | [9-prof "kprod™™Voprol™ [ ye g [ o | g [ oss | 0ss | 10 | 32 | 005 | defauit le3 | default default Ses | 2048 | 1 1 1
348 o_proj']
“"”'fs'é““" Se5 | 16 | 32 | 0.05 | ["c_proj", "c_atn”, "q_atn”] | Se-5 | 12 | 8 | 085 | 085 | 10 | 32 | 0.05 | default Se-5 | default default Se-6 | 2048 | 1 1 1
TABLE XVIII o LoRA Result - FPFT Resut
0
REPAIR EFFECTIVENESS OF 5 BILLION-LEVEL LLMsS UNDER 4 w i o 7 7 7 5 78 b
73 5 &
FINE-TUNING STRATIES. (Z%: REPAIR ACCURACY) Y ®
62 6
fa ”
H =D = 57 57 57

Fine-Tuning Strategy

LLM LoRA  AdaLoRA IA3 FPFT
InCoder-6B 13.17% 12.96% 1201%  12.64%
CodeGeeX2-6B 14.23% 13.17% 12.86%  16.23%
CodeGen25-7B 16.75% 14.23% 8.11% 11.70%
StarCoder-15B 15.49 % 14.23% 10.96%  13.07%
CodeLlama-34B  21.39% 12.01% 6.95% 16.02%

#Average 16.21% 13.32% 10.18%  13.93%
TABLE XIX

MEMORY COST OF 5 BILLION-LEVEL LLMS UNDER 4
FINE-TUNING STRATIES

Fine-Tuning Strategy

LLM LoRA AdaLoRA IA3 FPFT
InCoder-6B 11.37G 11.41G 11.21G  27.99G
CodeGeeX2-6B 12.11G 12.10G 12.55G  33.91G
CodeGen25-7B 13.16G 13.04G 13.15G  2791G
StarCoder-15B 23.44G 23.58G 23.17G  44.42G
CodeLlama-34B  41.51G 4141G 40.75G  79.13G

#Average 20.32G 20.31G 20.17G  42.67G
TABLE XX

TIME COST OF 5 BILLION-LEVEL LLMS UNDER 4 FINE-TUNING STRATIES

Fine-Tuning Strategy

LIM LoRA AdaLoRA 1IA3 FPFT
InCoder-6B 0.94s/BFP  1.08s/BFP  0.85s/BFP  0.40s/BFP
CodeGeeX2-6B 0.73s/BFP  0.75s/BFP  0.72s/BFP  0.57s/BFP
CodeGen25-7B 0.96s/BFP  1.04s/BFP  0.97s/BFP  0.47s/BFP
StarCoder-15B 1.59s/BFP  1.55s/BFP  1.53s/BFP  0.68s/BFP
CodeLlama-34B  3.62s/BFP  3.57s/BFP  3.49s/BFP  1.36s/BFP

#Average 1.57s/BFP  1.60s/BFP  1.51s/BFP  0.70s/BFP

d) Overall Performance: Here, we analyze the overall
performance of different fine-tuning strategies to provide guid-
ance for practical PEFT4LLM research. Firstly, among the
PEFT techniques, LoRA demonstrates a clear advantage in
repair effectiveness compared to the other two PEFT techniques
and the FPFT strategy. Additionally, LORA’s memory and time
costs are not significantly different from those of AdalLoRA and
IA3. While FPFT maintains an advantage in terms of time cost,

0 10000 20000 30000 40000 50000

Size of Train Samples

60000 70000 80000 90000 100000

Fig. 8.  Correct fixes for HumanEval-Java generated by InCoder-6B that are
fine-tuned with different-sized data.

it incurs higher memory costs and does not significantly outper-
form LoRA in repair effectiveness. To conclude, in memory-
constrained scenarios, LoRA is the more appropriate option for
practical use.

Finding 16: Overall, the LoRA technique is an optimal option for
resource-constrained scenarios.

e) LoRA vs. FPFT: Previous repair results have demon-
strated the superiority of LoRA over FPFT in maximizing the
repair capability. To further reveal the reason behind this, we
follow the previous work [13] to explore the impact of the
model’s repair capability under different fine-tuning data sizes
when using LoRA and FPFT. Here, we chose the HumanEval-
Java [13] with no risk of data leakage as the test benchmark and
implement fine-tuning with 100K training samples randomly
selected from the Transfer dataset [48]. For model selection,
we chose InCoder-6B and StarCoder2-15B, representing the
best and worst performance on HEV from previous experiments
(Table XII). In addition, we used 8-Bit Quantization in both
LoRA and FPFT experiments to save memory.

As shown in Figs. 8 and 9, we show the repair results for
each checkpoint using LoRA and FPFT strategies under dif-
ferent fine-tuning data sizes. These results clearly show that
the model’s repair capability does not always improve with
a larger fine-tuning data size. For example, when using the
FPFT strategy, InCoder’s repair performance after fine-tuning
with 100K samples is worse than after fine-tuning with 10K
samples (55 vs. 69). Similarly, StarCoder’s performance after
fine-tuning with 100K samples is worse than after fine-tuning
with 20K samples (98 vs. 104). Additionally, with the LoRA
strategy, InCoder’s repair results after fine-tuning with 30K
samples are worse than after fine-tuning with 20K samples (69
vs. 74), and StarCoder’s results follow a similar trend, with
performance dropping from 129 (20K samples) to 126 (30K
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Fig. 9. Correct fixes for HumanEval-Java generated by StarCoder2-15B that
are fine-tuned with different-sized data.

samples). This indicate that LLMs experience varying degrees
of catastrophic forgetting when using LoRA and FPFT.

To investigate the extent to which LoRA and FPFT suffer
from the catastrophic forgetting problem, we use flower plots
[110] to visualize the commonalities in the model’s repair ca-
pabilities across different fine-tuning data sizes. As shown in
Figs. 10 and 11, In particular, we observe that LoRA consis-
tently maintains more common fixes than FPFT. For instance,
all InCoder checkpoints achieved 29 more common fixes with
LoRA than with FPFT (51 vs. 22), and all StarCoder check-
points achieved 30 more common fixes with LoRA than with
FPFT (84 vs. 54). These results suggest that LLMs experience
a milder catastrophic forgetting problem when using LoRA, as
it retains more prior repair knowledge. In contrast, the FPFT
strategy suffers from more severe forgetting, as indicated by
the lower number of common fixes, suggesting a greater loss
of previously learned repair knowledge during the continual
learning process.

In summary, the experimental results demonstrate that both
LoRA and FPFT fine-tuning strategies suffer from the catas-
trophic forgetting problem to varying degrees. However, com-
pared to FPFT, the LoRA technique better mitigates catas-
trophic forgetting [111], retaining more of the repair knowledge
acquired during the continual learning process, which results in
improved repair capabilities.

VI. APR4LLM STUDY
A. Study Setup

Above experiments only explored the repair ability of LLMs
under the basic NMT fine-tuning strategy, and it remains
to be explored how to further enhance the repair ability of
LLMs. In recent learning-based APR work, various novel re-
pair strategies have been proposed. Therefore, we will explore
the generalizability of these repair strategies on LLMs, and
further analyze their potential in enpowering the repair abil-
ity of LLMs. Specifically, we reproduce 4 repair strategies
(NMT, ITER, TENURE, KATANA) on 5 LLMs (InCoder-6B,
CodeGeeX2-6B, CodeGen25-7B, CodelLlama-13B, StarCoder-
15B) and choose the Transfer dataset as the training data and
Defects4] V1.2 as the test benchmark. In the fine-tuning pro-
cess, we followed the experience of the PEFT4APR study (Sec-
tion V) in fine-tuning all models using the 8-Bit Quantization
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(a) Flower diagram of InCoder-6B when using LoRA.
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(b) Flower diagram of InCoder-6B when using FPFT.

Fig. 10. Flower diagram for 11 checkpoints of InCoder-6B when using
LoRA and FPFT.

and LoRA techniques. In the parameter settings, we follow the
settings of Task @ in the LLM4APR study (Section IV). In par-
ticular, ITER employs an iterative patch generation strategy,
which is different from other repair strategies that generate all
the patches at once, which can extend and explore more deeper
patch space. Note that when applying the ITER strategy to
LLMs, the substantial computational cost makes it impractical
to use a large beam size. Therefore, we follow the default
settings of the original paper of ITER and set the beam size
to 4 and iter size to 3. This means that 4 patches are generated
in each iteration, with iteration rounds of 3, and the final patch
space contains at most 86 (4+4%+43) patches.
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(a) Flower diagram of StarCoder2-15B when using LoRA.
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(b) Flower diagram of StarCoder2-15B when using FPFT.

Fig. 11.  Flower diagram for 11 checkpoints of StarCoder2-15B when using
LoRA and FPFT.

B. Empirical results

Table XXI shows the impact of using different repair strate-
gies on the repair capability of LLMs. The first row of the table
indicates the selected model and the second row indicates the
used repair strategy. For example, the StarCoder fine-tuning
implementation using the NMT strategy (StarCoder y ps7) pro-
duced 93 plausible fixes on Defects4] V1.2, of which 74 were
correct patches.

C. Research Questions

1) RQ6: How well do recent repair strategies work on
the LLM basis?

a) NMT: Although the basic NMT strategy works effec-

tively on these LLMs, the patch generation process, which relies
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solely on learning the mapping between buggy and fixed code
pairs, has its limitations. Specifically, while fine-tuning LLMs
with NMT enables the identification of defective code hunks
and the generation of potential patches, the traditional NMT
workflow lacks additional domain knowledge during the patch
generation phase. This deficiency can result in a suboptimal
patch space. For example, as shown in Fig. 12, the irrele-
vant variable thisBuf.length predominantly appears in
the patch space, whereas the key repair ingredient, the variable
size, is rarely present. As we continued to expand the patch
space, it was not until the Top-50 patch that LLM synthesized
the correct patch using this crucial repair ingredient. This case
suggests that the patch synthesis process for the NMT strategy
is unguided, leading to blind exploration of the patch space
and resulting in suboptimal positions for the correct patches.
Ideally, the patch space should contain more relevant ingredi-
ents, allowing correct patches to appear earlier. To alleviate this
problem, enabling the model to better understand code elements
and decide which key ingredients to employ to constrain its
patch synthesis process is a viable path to optimizing the patch
space.

Finding 17: The basic NMT strategy still works effectively on
decoder-only LLMs, but its lack of guidance on the patch genera-
tion process may result in a patch space that is sub-optimal.

b) TENURE: The TENURE strategy aims to enhance
patch generation by providing additional template guidance to
the model [49]. Theoretically, this guidance helps the model
synthesize repair behaviors that align with the target template.
However, surprisingly, the TENURE strategy appears to slightly
reduce the repair capability of the model. In specific, as shown
in Table XXI, the TENURE implementation on top of LLM
performs even worse than the basic NMT fine-tuning. We an-
alyzed the reasons behind this and found that LLMs tend
to predict repeated templates consistently. Here, we analyze
a case where the NMT strategy successfully repairs a bug,
while the TENURE strategy fails, highlighting the issue. As
shown in Fig. 13, the fourth candidate patch (Patch 4) gen-
erated by StarCodery;r agrees with the developer’s patch
and successfully fixes Chart-12. However, the top-10 candi-
dates generated by StarCoderrpnyre all fail to fix it. We ob-
serve that the correct repair template for Chart-12 should be
MutateSingleLine (i.e., mutating an entire line of code, see
TENURE'’s template settings [49] for details). Unfortunately,
StarCoderrpny rE always predicts incorrect templates, which
leads to synthesizing incorrect repair behavior. Moreover, we
observe that the TENURE strategy tends to predict duplicate
templates (e.g., the repair templates for StarCoderrpnurEe’S
Patch 2-10 are all MutateV ariable), which leads to the pos-
sibility that it misses the chance of correct templates, thus
limiting the model’s repair capability. Overall, the challenge
with the TENURE strategy and LLMs lies in covering a di-
verse distribution of templates with the model’s predictions.
To address this, incorporating a specialized template rank-
ing step could help cover the full range of template classes
and prioritize templates, potentially improving the strategy’s
effectiveness.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on August 08,2025 at 04:28:25 UTC from IEEE Xplore. Restrictions apply.



922

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 4, APRIL 2025

TABLE XXI
REPAIR RESULTS OF DIFFERENT REPAIR STRATEGIES FOR BILLION-LEVEL LLMS ON DEFECTS4J V1.2

LLM InCoder-6B CodeGeeX2-6B CodeGen25-7B CodeLlama-13B StarCoder-15B

Strategy NMT TENURE KATANA ITER | NMT TENURE KATANA ITER NMT TENURE  KATANA ITER NMT TENURE = KATANA ITER NMT TENURE = KATANA ITER

Beam Size 10 10 10 4 10 10 10 4 10 10 10 4 10 10 10 4 10 10 10 4

Patch Size 10 10 10 84 10 10 10 84 10 10 10 84 10 10 10 84 10 10 10 84

Chat 11/14 12/15 10712 11/13 12/14 9/10 9/10 12/13 11/14 10/12 911 12/14 12/14 11/12 11/11 13/14 12/15 11/13 10/12 12/15
Closure 22/29 22/30 21/26 20/29 | 19/23 18/20 17/20 15/19 26/30 22/29 24/27 25/32 27/32 22/26 28/34 23/32 34/37 28/32 31/36 25/30
Lang 13/19 13/21 14/23 1220 | 14/19 10/16 12/19 12/18 15/23 11720 1722 18/28 19/25 19/23 17/25 21/27 16/23 14/22 14/23 16/23
Math 2124 2024 20/26 1826 | 24/29 19720 23/26 20/22 28/35 26/32 30/36 26/39 29/32 24/28 31/38 29/35 30/36 27/33 30/37 31/37

Mockito 4/4 3/4 4/4 5/6 4/5 4/5 33 5/6 5/6 5/6 5/6 5/5 5/5 3/4 4/5 8/9 6/7 4/5 5/5 6/8

Time 3/3 2/3 212 3/4 2/3 2/3 3/4 2/4 3/3 33 3/3 2/6 3/4 3/5 3/4 35 3/4 3/4 3/5 4/6
#Total ‘ 74/93 72197 71/93 69/98 ‘ 75/93 62/74 67/82 66/82 ‘ 88/111 771102 88/105 88/124 ‘ 95/112 82/98 94/117 97/122 ‘ 1017122 87/109 93/118 94/119
return -1; public Paint getPaint(double value) {
} double v = Math.max(value, this.lowerBound);
char[] thisBuf = buffer; v = Math.min(v, this.upperBound);

- int len = thisBuf.length - strLen; = int g = (int) ((value - this.lowerBound) / (this.upperBound

+ int len = thisBuf.length - strLen + 1; + int g = (int) ((v - this.lowerBound) / (this.upperBound

+ int len = size - strlen; - this.lowerBound) * 255.0);

+ int len = buffer.length - strlLen; return new Color(g, g, 8)

+ int len = thisBuf.length - (strLen - 1); }

+ int len = thisBuf.length - strlLen + startIndex;

+ int len = thisBuf.length - 1 - strLen;

+ int len = Math.max(®,thisBuf.length - strlLen); Fig. 14. Chart-24 and its patch.

+ int len = thisBuf.length - (size - startIndex);

+ int len = thisBuf.length - strLen - startIndex;

+ final int len = thisBuf.length - strLen;

+ int len = capacity - strlLen;

+ int len = thisBuf.length - Math.min(strLen,size - startIndex);

+ int l?n = size - strlLen + 1; implements PaintScale, PublicCloneable, Serializable {

outer: . . private double lowerBound;
for (int i = startIndex; i < len; i++) { private double upperBound;
for (int J = 8; J < strien; j++) { public GrayPaintScale(double lowerBound, double upperBound) {
this.lowerBound = lowerBound;
this.upperBound = upperBound;
Fig. 12. Candidate patches generated by StarCoderpy s for Lang-61 o .
Patch 1-49 . t tch Patch 50 is th t tch public Paint getPaint(double value) {
( atc - are mcorrect patches, ratcl 1s the correct patc ) - int g = (int) ((value - this.lowerBound) / (this.upperBound
- this.lowerBound) * 255.0);
}
}
public MultiplePiePlot(CategoryDataset dataset) { . . .
super(); Fig. 15. Chart-24 with KATANA's slicing strategy.

- this.dataset = dataset;

+ setDataset(dataset); # Developer’s Patch

+ setDataset(dataset); # StarCoderw’s Patch 4
# StarCoderww’s Patch 1 (Template: InsertNullPointerChecker)

+ if (dataset!= null) this.dataset = dataset;

# StarCoderww’s Patch 2 (Template: MutateVariable) . . .

" this.dataset=dataset.copy(); As shown in Table XXI, KATANA’s slicing strategy does not
# StarCoderww:’s Patch 3 (Template: MutateVariable) . . . .

. i e P G EO)g seem to achieve a significant improvement compared to the
# StarCod ’s Patch 4 (T late: MutateVariabl 1 1

SrGelane=5 (e & (Epileios (i) NMT strategy of inputting a complete method-level context.

+ this.dataset=null;

St (i 5 (e (I erebie) Here, we find that blind slicing may remove the necessary repair

+ this.dataset=(CategoryDataset)dataset.clone(); . . . . , . .

# StarCoder’s Patch 6 (Template: MutateVariable) ingredients, resulting in the model’s failure to synthesize the

+ this.dataset=DatasetUtilities.createConsolidatedDataset(dataset);

# StarCoderms’s Patch 7 (Template: Mutatevariable) correct patch. For example, we take Chart-24 as an example that

+ this.dataset=dataset == null? new DefaultCategoryDataset():dataset; . .

# StarCoderwe’s Patch 8 (Template: MutateVariabie) ’ was successfully fixed by all LLMs” NMT implementation, but

+ this.dataset=new KeyedValues2DDataset(dataset); H : o 4
# StorCodermats Pateh  (Temlate: MutatVarisble) failed to be fixed by the KATANA implementation. Specifically,

* e o . as shown in Fig. 14, the NMT strategy uses the full method-level
# StarCoderww:’s Patchl@ (Template: MutateVariable) . . .

+ this.dataset=new KeyedValuesZI(JData;et(dataset,null); input, and the correct patch for the bug is to replace the variable
PiePlot piePlot = new PiePlot(null); . . . .
this.pieChart = new JFreeChart(piePlot); value with v, where v appears in the context as a potential repair

b
this.pieChart.removeLegend(); . . . .
ingredient. However, as shown in Fig. 15, KATANA performs

Fig. 13. Candidate patches generated by StarCodery;r and
StarCoderrgnyrpe for Chart-12 (StarCoderpsr’s Patch 4 is correct
patch, StarCoderr g vy rE’s Patch 1-10 are incorrect patches).

Finding 18: The TENURE repair strategy shows limited effective-
ness on LLMs, primarily due to the model’s inability to generate
a diverse distribution of templates for generating correct patches.

c) KATANA: The KATANA strategy aims to simplify the
context and extract relevant elements (repair ingredients) by
slicing the input bug code [54]. Briefly, KATANA reduces noise
and captures relevant repair ingredients by analyzing statements
that have a control or data dependency on the buggy statement.

slicing by retaining only the relevant code elements in the bug
statement and removing the irrelevant content in the context,
which results in missing the repair ingredient v and thus fails
to synthesize the correct patch. Overall, this is due to the fact
that KATANA'’s slicing strategy may ignore the root cause of
the bug in order to retain the necessary relevant ingredients.
It also shows that simply slicing code elements using their
dependencies is not enough and that it is still necessary to retain
the necessary context to fully understand the root cause of the
bug.

Finding 19: KATANA's slicing strategy, while helpful in simpli-
fying contextual input and capturing relevant code elements, may
also result in the loss of necessary repair ingredients.
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TABLE XXII
REPAIR RESULTS OF ITER’S STRATEGY FOR BILLION-LEVEL LLMS ON DEFECTS4] V1.2

923

LLM InCoder-6B CodeGeeX2-6B CodeGen25-7B CodeLlama-13B StarCoder-15B
ITER Size ITER1 ITER2 ITER3 | ITER1 ITER2 ITER3 | ITER1 ITER2 ITER3 | ITER1 ITER2 ITER3 | ITER1 ITER2 ITER3
Beam Size 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Patch Size 4 20 84 4 20 84 4 20 84 4 20 84 4 20 84

Chat 10/12 11/13 11/13 11/12 12/13 12/13 11/13 12/14 12/14 12/13 13/14 13/14 12/14 12/15 12/15

Closure 17/23 20/29 20/29 14/17 15/18 15/19 17/21 24/30 25/32 18/22 19/26 23/32 19/22 24/29 25/30

Lang 9/12 10/17 12/20 12/17 12/18 12/18 10/15 14/24 18/28 16/21 19/25 21/27 13/17 16/22 16/23

Math 14/17 15/23 18/26 19/20 19/20 20/22 24/28 26/37 26/39 22/26 28/34 29/35 20/25 26/32 31/37

Mockito 3/4 5/6 5/6 4/5 5/6 5/6 3/4 4/4 5/5 3/3 6/6 8/9 4/5 6/8 6/8
Time 3/4 3/4 3/4 2/2 2/3 2/4 2/4 2/5 2/6 2/3 2/4 3/5 2/3 3/5 4/6
#Total(Corr./Plaus.) \ 56/72 64/92 69/98 \ 62/73 65/78 66/82 67/85 82/114  88/124 \ 73/88 87/109  97/122 \ 70/86 87/111 94/119

static boolean mayBeString(Node n, boolean recurse) {
if (recurse) {
return allResultsMatch(n, MAY_BE_STRING_PREDICATE);
+ return allResultsMatch(n,MAY_BE_STRING_PREDICATE,true); # Patch 1
return allResultsMatch(n,MAY_BE_STRING_PREDICATE,false); # Patch 2
+ return allResultsMatch(n,MAY_BE_STRING_PREDICATE,true); # Patch 3
} else {
return

+

mayBeStringHelper(n);

Fig. 16.  StarCoder;rgr’s patches for Clourse-10.

d) ITER: The iterative repair paradigm of the ITER strat-
egy is helpful in extending and exploring the patch space,
which further alleviates the limitation of computing resources
on the limited patch space. The cleverness of the ITER strategy
lies in its ability to iteratively generate subsequent patches
by leveraging previous patches, thereby greatly expanding and
exploring deeper patch spaces. For example, as shown in Ta-
ble XXI, the ITER strategy extends the patch space to 86
patches through multiple iterations with a smaller beam size
(beam size is 4), which rivals or even exceeds the repair results
of other non-iterative generation strategies (e.g., CodeGen;rer
vs. CodeGeny ps7 and CodeLlama;rggr vs. CodeLlamay 1)
with a larger beam size (beam size is 10). Meanwhile, as shown
in Table XXII, the ITER strategy can explore the patch space
more deeply and improve the repair results as the iteration
number increases. However, the ITER strategy also carries
limitations in patch generation. We observe that ITER’s patch
generation may get stuck in a loop of iterations. As shown
in Fig. 16, the first iteration of ITER generates Patch 1 is an
incorrect patch, and Patch 2 is generated after implementing
second iterative fixes on top of Patch 1, and yet the third it-
eration’s Patch 3 remains consistent with the previous Patch 1.
This results in numerous duplicate incorrect patches in the patch
space, which affects the repair efficiency.

Finding 20: ITER’s iterative repair paradigm is an effective
measure to alleviate patch space constraints in the era of LLMs,
however it may have duplicate items in the patch space.

e) Repair Overlap: In order to present a clearer picture of
the impact of different repair strategies on the repair capability
of the LLM, we analyze the overlap in repair capability of LLM
implementations based on different repair strategies. Fig. 17
illustrates that each strategy successfully fixes a significant
portion of bugs, indicating that different repair strategies make
unique contributions to the repair capability of LLMs. In real-
world scenarios, these LLMs, implemented based on different

strategies, can be ensembled as distinct expert models to further
enhance overall repair results.

Finding 21: Different repair strategies have unique contributions
to the repair capabilities of the LLM, and there is potential to
ensemble them to build powerful repair tools.

VII. DISCUSSION

This section discusses the limitations identified in our study
that affect the repair capability of LLMs and seeks directions
for improvement.

1) Loss of Pre-Trained Knowledge: As described in Find-
ing 9, after fine-tuning, LLMs may lose some of the knowl-
edge learned from the pre-training phase compared to zero-shot
learning [17]. Furthermore, we noticed that AlphaRepair [17]
converts the repair task into a cloze task (MLM) rather than
a translation task (NMT). The cloze task could better fit the
model’s pre-training task (i.e., MLM). That is, it predicts the
token at the mask location based on the contextual tokens. How-
ever, it is unclear how the repair ability differs using the two
paradigms (NMT and MLM). Therefore, we suggest exploring
the following two directions.

D1: Mitigation of catastrophic forgetting. There have been various
mitigation measures towards this problem [108], and it is mean-
ingful to introduce these techniques into APR.

D2: NMT vs. MLM. Fine-tuning the LLM through both NMT
and MLM tasks allows us to explore the differences in repair
capabilities between the two learning paradigms.

2) Lack of Repair Ingredients and Long Sequence Problem:
As described in Finding 10, the input/output length limit of the
model make LLMs can not cover sufficient repair ingredients,
which in turn constraints the repair capability. Furthermore,
Finding 12 also points out that LLMs suffer from the long
sequence problem.

D1: Precise context extraction. Through data/control flow analysis,
we can trim irrelevant context [56], aid in pinpointing defect
locations and guide repairs.

D2: Essential repair ingredients. We can integrate traditional APR
techniques based on redundancy assumptions [18] with LLMs to
introduce additional repair elements into the model input.

D3: Breaking the length limit. One way to model long sequences
for covering more repair ingredients is MegaByte [112]. In addition,
adopting sliding-encoder and decoder (SLED) [113] to partition the
input into overlapping chunks may also help accept long and/or
dependent methods.
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(a) Implementation of Different Repair
Strategies on InCoder-6B.
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TENURE
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NMT 2 ITER

41

(b) Implementation of Different Repair
Strategies on CodeGeeX2-6B.

TENURE

3 4
NMT 2 ITER

(c) Implementation of Different Repair
Strategies on CodeGen25-7B.

TENURE

4 5

NMT 1 ITER

63

(d) Implementation of Different Repair
Strategies on CodeLlama-13B.

Fig. 17. Bug fix Venn diagram on Defects4] V1.2.

3) Long-Tail Problem: As described in Finding 11, the
long-tail problem caused by imbalanced type distribution in
vulnerability repair tasks remains a key challenge. Also, there
is the small sample problem. Previous works [33], [56] have
proposed using transfer learning to alleviate this problem.

D1: Data augmentation. Designing data augmentation schemes
[114] can expand the number of training samples and mitigate the
challenge of small sample sizes.

D2: Combining multiple PLs. Using meta learning [115] that
integrates multiple PLs to enhance the multilingual repair capability
of LLMs.

4) Multi-Hunk Fixes: As described in Finding 6, LLMs still
have difficulty dealing with complex multi-hunk fixes.

D1: Capturing complex code dependencies. Tree [31] or graph
[116] structures that capture global dependencies can enhance the
model’s ability to understand and handle complex repair tasks.
D2: Extracting in-depth semantic information. Leveraging high-
level semantic information (such as bytecode [117] and intermedi-
ate representation [118]) can aid the model in comprehending the
root cause of defects, thereby enhancing its repair capability.

VIII. THREATS TO VALIDITY

Internal. Existing approaches typically use different training
datasets, patch space sizes, post-processing strategies, and other
details, and it would be unfair to compare these APR tools
directly [119]. To mitigate this threat, we used the same dataset
and beam size as baselines. Note that when comparing with
DEAR [31], their paper did not specify a specific patch space
size, so we followed the practice of previous works [41], [46]
and chose a minimum beam size of 100 [46] for million-level
LLMs. Besides, we set the beam size is 10 when fine-tuning

TENURF

0 2

NMT 1 ITER

66

(e) Implementation of Different Repair
Strategies on StarCoder-15B.

billion-level LLMs, which is due to our memory limitations.
Also, our work did not use patch filtering and re-ranking strate-
gies, whereas some baselines like DEAR adopted the post-
processing for improvement. Therefore, our results could be
further improved and our comparison is fair for baselines.

External. Although we have conducted a comprehensive
study of 10 LLM families for APR, with a variety of scenarios
(e.g., 3 defect types, 8 test benchmarks, and 3 PLs), our results
may still not generalize well to other LLMs and PLs [120].
For example, we did not include extremely LLMs (e.g., Falcon-
180B) for APR, mainly because of the limited computing re-
source. However, we believe our results are representative for
a relatively wide range of conditions. We will enhance it with
more advanced resources and expect researchers of following
work could improve our study.

IX. RELATED WORK
A. LLM4APR

1) Technique: Nowadays, APR research has entered the era
of LLM. Depending on the use of different learning paradigms,
current LLM-based APR techniques can be divided into two
types: prompt-learning and fine-tuning. The prompt learning
paradigm based LLM4APR work implements repair by design-
ing and constructing suitable prompt templates to utilize the
language understanding and generation capabilities of the LLM
itself. Typical works include AlphaRepair [17], ChatRepair
[19], ContrastRepair [28], SRepair [121], RepairAgent [29],
FixAgent [122], Repilot [20], GAMMA [30], TypeFix [22],
D4C [123], Toggle [124], and so on. For example, AlphaRepair,
GAMMA, and TypeFix are inspired by the template-based APR
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technique [101] that treats the repair task as the infilling task,
thereby constructing prompted templates to mask predictions of
fault locations. ChatRepair, ContrastRepair, and SRepair allow
guiding the LLM to better generate fixes by providing additional
information (e.g., test case test execution information, project-
level repair ingredients, etc.) to the LLM by conversation. Re-
cently, LLM4APR research has entered the era of agent, where
FixAgent and RepairAgent enable repair workflows by building
agent applications on top of LLM to allow LLM to act as multi-
ple roles and execute external tools. In summary, current LLM-
based APR research focuses on how to design novel strategies
to better utilize (or stimulate) the repair capability (or potential)
of LLMs.

2) Study: Atthe same time, researchers have conducted em-
pirical studies to reveal the potential of LLM in APR tasks. Fan
et al. [10] investigated whether APR techniques can improve
the reliability of code produced by LLMs (Codex) and provide
suggestions for enhancing APR with the help of LLMs. Xia
et al. [16] and Pearce et al. [11] comprehensively explored the
performance of LLMs in bug and vulnerability repair tasks us-
ing the zero/few-shot learning paradigm. Besides, some studies
[58], [125] systematically compared LLMCs on various tasks,
which partially include APR. Unlike their work, we focus on
the repair capabilities of LLMs under the NMT fine-tuning
paradigm. One similar work is Jiang et al. [13], which also
used the fine-tuning paradigm. However, they focused on the
comparison between zero-shot and fine-tuning for APR, and
only explored the single-hunk Java bug repair task. In contrast,
we make a comprehensive exploration of fine-tuning LLMs for
APR across multiple languages, various defect types, and dif-
ferent levels of bug/vulnerability complexity. We also provide
guidance on selecting the appropriate designs to enhance the
repair capabilities of LLMs, and achieve the new SOTA results.
Another similar work is Zhang et al. [12], which also used the
fine-tuning paradigm. The difference is that they focus only on
vulnerability repair, while our study covers more defect types.
In addition, previous studies [12], [13], [14] have rarely fine-
tuned on the basis of LLM at scales above 6B, and our extended
study bridges this gap.

B. PEFT4LIM

1) Technique: With the increase in the size of LLMs, fine-
tuning them becomes a resource-intensive task. For researchers
with limited computing resources, fine-tuning LL.Ms is increas-
ingly expensive. Therefore, PEFT technique research aims to
further lower the threshold of model fine-tuning to address
this challenge. Numerous PEFT techniques have been proposed
and recent PEFT surveys [37], [126] have categorized them
into four main types: 1) Additive Fine-tuning. These methods
involve introducing new extra trainable parameters for task-
specific fine-tuning, e.g., Sequential Adapter [127], P-tuning
[95], TA3 [53], etc. 2) Partial Fine-tuning. These methods aim
to reduce the number of fine-tuned parameters by selecting a
subset of pre-trained parameters that are critical to downstream
tasks while discarding unimportant ones, e.g., BitFit [128],
FISH MASK [129], LT-SFT [130], etc. 3) Reparameterized
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Fine-tuning. These methods utilize low-rank transformation
to reduce the number of trainable parameters while allowing
operating with high-dimensional matrices, e.g., LoRA [51],
AdaLoRA [52], QLoRA [102], etc. 4) Hybrid Fine-Tuning.
These methods aim to combine various PEFT techniques to
leverage the strengths of each method and mitigate their weak-
nesses, e.2., MAM Adapter [131], UniPELT [132], AutoPEFT
[133], etc.

2) Study: Recent studies have begun to explore how to select
the appropriate PEFT technique for the specific downstream
task in order to maximize the model’s capabilities. Liu et al.
[134] examined the performance of Adapter Tuning and LoRA
on 5 million-level LLMs processing code change related tasks.
Liu et al. [135] explored the effectiveness of Adapter Tuning,
Prefix Tuning, LoRA, and MHM techniques for 4 million-level
LLMs on code summarize and generation tasks. Zou et al. [136]
evaluated the effectiveness of 5 PEFT methods on 8 million-
level LLMs for four software engineering tasks. Pu et al. [136]
evaluating model performance across different data scales of
classification and generation dataset under 4 PEFT techniques.
However, current research has not explored the impact of PEFT
on the base of billion-level LLMs for the code repair task,
and our study bridges this gap to provide guidance on how to
select appropriate PEFT techniques for billion-level LLMs to
maximize the repair capability of LLMs.

X. CONCLUSION

This study provides a comprehensive exploration of APR
research in the era LLLMs, which we summarize into 3 areas.
1) LLM4APR: We comprehensively investigate the repair ca-
pability of million/billion-level LLMs on APR tasks in order
to present the significant impact of LLMs on APR research. 2)
PEFT4LLM: We thoroughly explore the impact of PEFT tech-
niques on LLM4APR research in order to provide guidance on
how to select appropriate PEFT techniques. 3) APR4LLM: We
systematically analyze the potential of novel APR techniques
(repair strategies) in further enhancing the repair capability of
LLMs in order to reveal the generalizability of recent repair
strategies in the era of LLMs.
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